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ABSTRACT
The problem of existence and uniqueness of global classical solutions of
abstract quasi-linear evolution equations is considered in a general Banach
space. The results obtained here are applied to the initial value problems
for hyperbolic partial differential equations.

This paper is concerned with the abstract quasi-linear evolution equation

' (t) = A(u(t))u(t) fort >0,
() { u(0) =

in a real Banach space Z, where {A(w): w € Y} is a family of closed linear oper-
ators in Z and Y is another real Banach space which is densely and continuously
imbedded in Z.

There are at least two different operator-theoretical approaches to the exis-
tence problem for quasi-linear hyperbolic partial differential equations. One is
the theory of quasi-contractive nonlinear semigroups, which was applied to first
order quasi-linear equations in several space variables by Crandall [1]. However,
this method breaks down for a broad class of systems, since the quasi-contractive
continuity cannot be expected in that case. A new fully nonlinear existence
theory covering the quasi-linear examples has been presented by Crandall and
Souganidis [2]. An attempt to develop the theory of nonlinear semigroups of Lip-
schitz continuous operators and not quasi-contractions is found in Kobayashi and
Tanaka [8]. The other is the theory of abstract quasi-linear evolution equations
initiated by Kato [5], which has been constantly recognized to be important from
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both theoretical and practical points of view. Most of the literature dealing with
such quasi-linear evolution equations is devoted to the study of local existence
of classical solutions. Among others, Kobayasi and Sanekata [9] succeeded in
proving an existence theorem of local classical solutions without assuming the
reflexivity of Z and Y, and their result was improved by Kato [6] so that it can
be applied to the system of first order quasi-linear equation in C{R™). So far
sufficient conditions have been investigated extensively for quasi-linear evolution
equations to possess local classical solutions. However, it seems to us that very
little is known about sufficient conditions on {A(w): w € Y} for the classical
solutions to exist globally in time, while there are several works concerning the
global existence of solutions of quasi-linear hyperbolic partial differential equa-
tions such as the wave equation of Kirchhoff type.

We are here interested in developing the latter abstract theory so that it is
applicable to the problem of existence and uniqueness of global solutions of quasi-
linear hyperbolic systems; hence our purpose is to discuss the problem of global
existence of classical solutions of quasi-linear evolution equations of the type
(QE). Equation (QE) may have only local classical solutions provided that A(w)
is local quasi-dissipative for each w € Y, and it is necessary to consider the growth
of classical solutions. Here we employ a nonnegative continuous functional ¢ on
Y to define the local quasi-dissipativity of A(w) and specify the growth of a clas-
sical solution u of (QE) in terms of the real-valued function ¢(u(-)). In case of
concrete partial differential equations the use of such a functional ¢ corresponds
to a priori estimates or energy estimates which ensure the global existence of the
solutions as well as their asymptotic properties. It should be noted that the idea
of the localization with respect to y is affected by the Lyapunov method and that
the present paper is similar in spirit to Oharu and Takahashi [11] discussing non-
linear semigroups associated with semilinear evolution equations. The Lyapunov
method for nonlinear semigroups is found in Pazy [14] and Walker [15].

In Section 1 we formulate typical hypotheses on A(w) in a local sense by using
a functional ¢ and investigate the uniqueness of classical solutions of (QE). This
section contains the statement of main theorem and some of basic properties of
maximal solutions of scalar ordinary differential equations used in later argu-
ments. Section 2 provides the construction of approximate solutions for (QE)
where the “semi-implict” discrete scheme

(wi —uio1)/(ti —tic1) = A(uior)u; fori=1,2,...,
O=t<thi<ta< - <t <+

is used instead of the “fully implicit” discrete scheme.
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Section 3 discusses the convergence of approximate solutions constructed in
Section 2. The problem of this kind has been studied by Crandall and Sougani-
dis [2]. Our result (Theorem 3.1) is different from theirs in that it shows the
convergence of solutions of the discrete problem in a “good” subspace Y of Z.
Typical examples such as damped extensible beam equ.ations and quasi-linear
wave equations are presented in final Section 4 to illustrate our abstract theory.

1. Preliminaries and main result

In this section we state the main result of this paper. We start with three real
Banach spaces Y C X C Z, with all the inclusions continuous and dense; hence
there exist cx > 0 and ¢y > 0 such that ||z|lz < cx|z||x for z € X, and
lyllx < eyllylly for y € Y. It is assumed that Z and X have the same topology
on a bounded set of Y in the following sense: Given any bounded subset B of
Y and € > 0, there exists § > 0 such that z,y € B with ||z — y||z < § implies

llz — yllx < e. We consider a continuous functional ¢: Y — [0,00) such that

(¢1) for each & > 0 the set Y, = {w € Y: p(w) < o} is bounded in Y,

(¢2) ¢ is bounded on each bounded subset of Y.
We now set up basic hypotheses in a local sense on the operators A{(w) appearing
in (QE) by means of the functional ¢.

(N) For each w € Y there exists a norm || - |l(y) in Z with the following
properties:

(N1) For each a > 0 there exists Mz(a) > 1 such that

(1.1) Mz(2) Hlzllz < l|2llw) < Mz(@)|l2l|2

forz€ Z and weY,.
(N2) For each & > 0 there exists Lz(a) > 0 such that

(1.2) lzllw) < ll2ll(ay (X + Lz(a)|lw — @] x)

for 2 € Z and w,w €Y,.

It should be noted here that Hughes et al. [4] first proposed the equivalent
norms satisfying conditions (N1) and (N2), and established the abstract theory
which is applied to second-order quasi-linear hyperbolic systems on R™.

(A) The family {A(w): w € Y} of closed linear operators in Z satisfies the
following conditions:

(A1) For each a > 0 there exists w(a) > 0 such that

A('(U) € G(Z('w)’ l,w(a))
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for w € Yy, where Z(,,) denotes the Banach space Z with the norm || - ||(,,). Here
and subsequently, 2 € G(X, M, ) is written for the infinitesimal generator 2 of
a semigroup {T'(t): t > 0} of class (Cp) on X satisfying ||T(t)||x,x < MePt for
t>0.

(A2) There exist an isomorphism S of Y onto Z and a family
{B(w): w € Y} in B(Z) such that

SA(w)S~! = A(w) + B(w)

for w € Y, where the family {B(w): w € Y} satisfies the following properties:
For each a > 0 there exists Lg(a) > 0 such that

(1.3) |B(w) — B(®)liz,z < Lp(a)llw —dlly

for w,w € Y,.
(A3) ForweY, D(A(w)) DY, and A € C(Y; B(Y, X)). For each & > 0
there exist M4(a) > 0 and L4(a) > 0 such that

(1.4) lAW)lyx < Ma(a) forwe Yy,
(1.5) |A(w) — A@)ly.z < La(@)lw—d|lz for w1 € Y.

Remark 1.1: (i) From (1.3) and property (1) it follows readily that for each
a > 0, there exists Mg(a) > 0 such that

(1.6) |B(w)||z,z < Mp(a) for w € Y,.

(ii) For each w € Y,,, we have

A(w) + B(w) € G(Z(w), 1,®(a)),
(1.8) (I = hA(w))'w = S~1(I — h(A(w) + B(w)))~"Sw
for h > 0 with hw(a) < 1, where we set @(a) = w(a) + Mz(a)*Mp(a).

The first assertion is proved by the perturbation theorem and the following
estimate which follows from (1.1) and (1.6):

”B(w)“Z(w),Z(w) < MZ(a)2MB(a)'

The second assertion follows from condition (A2).
(iii) For each w € Y, there exists hg > 0 such that (I — hA(w))"'w € Y for
h € (0, ko), and limp)o(I — hA(w))"*w = w in Y. This fact follows from (ii).
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Because of the localized conditions stated above, problem (QE) may have only
local classical solutions by the theory established in [6] and [9]. Hereafter we
mean by a classical solution u to (QE) on J = [0,7] or [0,7) with 0 < 7 < 00
that u € C(J: Y)NCYJ: X) and the (QE) is satisfied for t € J. A classical
solution to (QE) on [0, 00) is called a global classical solution to (QE).

Throughout this paper we may assume cx = cy = 1 without loss of generality.
We recall the following uniqueness theorem of classical solutions to (QE) with
proof.

THEOREM 1.1: For each T > 0, the (QE) has at most one classical solution on
[0, T1.

Proof: Let T > 0 be fixed arbitrarily. By u and v we denote two classical
solutions to (QE) on [0,7], and set ro = sup{||u(t)|ly V |lv(®)lly: ¢t € [0,T]}.
Condition (¢2) implies ap = sup{p(w): |[w|ly < ro} < co. To prove u = v on
[0, T], consider the function ¢(t) = [lu(t) — v(t)||(u(t)) on [0,T]. We first show
that ¢ is continuous on [0,T)]. To this end, let s,t € [0,T]. By (1.2) we have

¢(t) — d(s) < (|lult) — v(t)lluis)) — luls) = v($)llusy)
+ llu(t) — vl sy Lz(ao)llu(t) — u(s)llx-

By (1.1) the right-hand side is bounded by
Mz(ao)|lu(t) — v(t) — (uls) — v(s))llz + 2roMz(ao) Lz (co)llu(t) — u(s)lix-
This implies the continuity of ¢ on [0,7]. Now, we compute D_¢(t), where
D_¢(t) = liminf (¢(t) — (t — h))/h

for t € (0,T]. Let t € (0,7] and h > 0 such that t — h € [0,7]. Then
(p(t) — ¢(t — h))/h is written as

(1.9)  (flu(®) = vl ey — Nlult = k) = v(t = B)llu@y))/h
+ (llult = B) — v{t — )@y — lult — B) — ot — B)llue—ny)) /By

and the first term on the right-hand side tends to [u(t) — v(t), u'(t) — v'(t)](u@))
as h | 0, where [z, y](y)) is defined by

[z, Y] uge)) = 1}5{; (1=l ueeyy = i = hylluey) /b
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By condition (A1) and (1.5) we have

[u(t) — v(t),w' () — v'(t)](uey)
= [u(t) — v(t), A(u(t))(u(t) — v(t)) + (A(u(t)) — A(v())v(O)] )
< wlao) lu(t) = v()l|(uqey) + Mz (0)*La(co)||u(t) — v()l ey ro-

(
(

By using (1.2), the last term on the right-hand side of (1.9) is majorized by

llut — h) = v(t = A)ll(uge—n)) Lz (o)llu(t) — ult = h)llx/h,

which tends to |[u(t) — v(t)||(ue)) Lz (a0)llv'(t)||x as h | 0. We have |[u'(t)[|x <
Ay x lu@)lly < Ma(ao)re. It follows that D_¢(t) < Bog(t) for t €
(0, T), where By = w(ap) + Mz(ap)?La(ao)ro + Lz(co)Ma(ap)ro. Solving this
differential inequality we find ¢(t) < exp(Bot)¢(0) for ¢ € [0,7]. Since ¢(0) =
we have u = v on [0, 7. |

In our setting, problem (QE) may have only local classical solutions, and it
is necessary to consider the growth of classical solutions. Here we specify the
growth of a classical solution u(-) of (QE) by means of the function p(u(-)). A
nonnegative continuous function g on [0, 00) is called a comparison function
if there is an o > 0 such that 7(ag) = oo, where [0,7(a)) denotes the interval
of existence of the non-extensible maximal solution m(t; @) of the initial value
problem

(1.10) '(t) = g(r(t)) fort >0, and 7(0)=a.

We choose such a comparison function g and consider global classical solution
u(-) of (QE) satisfying the growth condition

(1.11) o(u(t)) < m(t;p(ug)) fort>0

for the initial data ug € Y,,. We give here two typical examples of comparison
functions.

Example 1.1: (i) Let a,b > 0. A function g defined by g(r) = ar +bforr > 0
is a comparison function, and the associated non-extensible maximal solution of
(1.10) is given by m(t;a) = e**a + bfot e*(t=9) ds for t > 0. Note that T(a) = co
for all o > 0.

(ii) Another example of comparison function is given by a function g of the
form

(1.12) g(r) = ((p(r) —c)r) vV O
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where p be a nonnegative continuous function with p(0) = 0, and ¢ > 0. Indeed,
if we choose ag > 0 so that p(r) < c for r € [0, o] then for each a € [0, ayp), we
have 7(c) = 0o and m(t;a) = a for t > 0.

Throughout this paper we assume that conditions (N) and (A) are satisfied.
The main result of this paper is given by
MAIN THEOREM: Suppose that the following condition (G) is satisfied.

(G) There is a comparison function g with 7(cg) = oo such that

lirn inf (((1 — hA(w)) ™ w) — p(w))/h < g(p(w)) forweY.

Then for each ug € Y,,, there is a unique global classical solution u to (QE)
satisfying the growth condition (1.11).

We conclude this section by listing up some basic properties of maximal
solutions used later.

For each € > 0 we write m.(¢; @) for the non-extensible maximal solution of
the initial value problem

r'(t) = ge(r(t)) fort>0, and r(0)=aq,

where g. is defined by g.(r) = g(r) + ¢ for r > 0. The maximal interval of
existence of m.(t; @) is denoted by [0, 7.{c)).

PROPOSITION 1.2: The following assertions hold:

(i) If @ > g and € > gg then 7.(a) < 7o (o) and m.(t; @) > me,(t; o) for
t € [0,7()).
(i) Ase | eg and a | ap, we have T.(a) T 7, () and m.(t;a) | me, (t; ap)
uniformly on every compact subinterval of [0, 7, (cg))-
(iii) If s € [0,7c(a)) then 1.(m.(s;a)) = 7.(a) — s and

me(t + s;a) = me(t;me(s;)) fort €[0,7:.(a) — s).
(iv) Ife > gg then for each a > 0, m.(t; @) > me, (t;a) for t € (0,7.(a)).

Proof: The elementary facts (i) through (iii) have been already proved in [8].
To prove (iv), let & > 0 and € > £9. A continuously differentiable function f on
[0,7:()) defined by

F(t) = me(t; @) — me, (8 @)
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satisfies f/(0) = g(a) + ¢ — (g(a) + £9) > 0. By the continuity of f’ there is a
to € {0,7-(x)) such that f'(£) > 0 for £ € [0,%9]. Since f(0) = 0 we have by
the mean value theorem, f(t) > 0 for t € (0, to]; namely m,.(¢; @) > m,(¢; @) for
t € {0,%). For t € [tp, 7(a)), we find by an easy computation

me(t;Q) > geo(Me(t;@)) and  my (8 a) = gey (e, (; @)

Since me(to; &) > me,(to; @), we have m(t; @) > me,(t; @) for t € [tg, 7 (), by
[10, Theorem 1.2.1]. |

2. Construction of “semi-implicit” discrete approximations

The main result in this section is given by the following theorem which ensures
the existence of “semi-implicit” discrete approximations of (QE).

THEOREM 2.1: Suppose that condition (G) holds. Let € > 0 and ug € Y. Then
there exists a sequence {(t;,u;)}2, in[0,00) XY such that it satisfies the following
conditions:
(D) 0=tg<ty1 < - <t;i < - < 7e(p(w));

(ii) t; —t;- 1<€forz—1 2,.
(i) (ws —wi—1)/(ti —ti1) = A(ul_l)ui fori=1,2,...;
(iv) @(us) < me(ts;p(ug)) fori =1,2,...;

)

(v) lim; e t; = Te((up))-
We prove four lemmas needed for the proof of Theorem 2.1.

LEMMA 2.2: Suppose that condition (G) holds. Then for eache >0 andweY,
there is a null sequence {A,}22, of positive numbers such that

P((I = AnA(w) ™ w) < me(An; p(w))

forn>1.

Proof: Lete > 0and w € Y. By condition (G) there is a null sequence {A,}2
of positive numbers such that o((I — A\, A(w)) " w) < (g(p(w)) +€/2)An + o(w)
for n > 1. Without loss of generality, it may be assumed that A\, € [0, 1] for all
n > 1. Now, let us define r,(t) = (g(p(w)) + €/2)t + o(w) for t € [0,A,]. We
wish to prove

(2.1) Ta(t) S me(t;p(w)) for t € [0, An] N[0, 7 (0(w))).
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To this end, we differentiate r,(t) and use the estimate

Ira(t) — p(w)| < (g(p(w)) +€/2)A,
for ¢ € [0, \,]. This yields

o (t) < g(ra(t) + p(g(p(w)) + /2 + w(w); (9(p(w)) +€/2)An) +€/2

for t € [0,),], where p(M;r) = sup{|g(t) — g(s)|: 0 < ¢t,s < M,|t —s| < r}.
Clearly, lim,;o p(M;r) = 0 for each M > 0; hence

p(g(p(w)) +€/2 + p(w); (9(p(w)) +€/2)An) < /2

for sufficiently large n. It follows that
(1) < ge(ra(t)) fort€[0,A.], and 7,(0) = ¢(w),

which implies (2.1) by the comparison theorem. We have ), < 7.(p(w)) for
sufficiently large n, since 7.(¢(w)) > 0. The desired claim is then proved by
substituting t = A, into (2.1). |

LEMMA 2.3: Suppose that {A(w): w € Y} is a family of closed linear operators
in Z satisfying the following condition:

For each o > 0, there exists ©(a) > 0 such that
(2.2) A(w) € G(Ztw),1,0(a))  for w € Y,.

Let a > 0 and assume that a sequence {t;}3°, of nonnegative numbers and a
sequence {w;}i°, in Y, satisfy the following conditions:

(i) 0=t <t <ta<--;
(ii) there exists L > 0 such that

”’U)l — wl_1||x < L(tl - tl—l) forl=1,2,....

If there exists ko > 0 such that ({; — t;_1)&(a) < 1/2 for I > kg + 1, then

[

II - -t-DA@_ )™

l=k41

< M(a)exp(B(a)(t: — tx))
Z2,Z
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for i > k and k > ko, where M(a) = Mz()? and B(a) = 20(a) + Lz(a)L.
Proof: Let z € Z and k > kg, and then set

[T d-hA@_)2

I=k+1

a; =

(ws)

fori>k ,where hy =t;—t;_ for{ =1,2,.... By (1.2) and (2.2) we have
a; < (1= hi(a)) (1 + Lz(a)|lws — wi-1lx)ai1,

and condition (ii) implies a; < (1 — h;o(a)) (1 + Lz(a)Lh;)a;_; for i > k + 1.
The desired estimate is obtained by iterating this inequalities, and using condition
(1.1) and the estimate (1 —¢)~! < €2 for t € [0,1/2]. |

LEMMA 2.4: Let @ > 0 and 7 > 0. If a sequence {(t;,u;)}2, in [0,7) X ¥,
satisfies two conditions

) 0=to<t1<--- <t < <7 and lim,ot; =7,
(ii) (w5 — wi—1)/{ti — tic1) = A(u;_q)uy  fori=1,2,...,

then we have the following two assertions:

(a) For each z € Z and sufficiently large k, the limit

i
lim H (I — (i —tic1)A(wi1)) "'z exists in Z.
i—00 )

(b) The sequence {u;} convergesinY asi — oo.

Proof: Since u; € Y, for i > 0 the sequence {u;} is bounded in Y, by con-
dition (p1). We apply (1.4) together with this fact to the inequality obtained
by condition (ii) that ||u; — ui—1||x < (i — ti—1)||A(ui1)|ly, x ||uil|ly for ¢ > 1.
This yields that assumption (ii) of Lemma 2.3 is satisfied with w; = u; and
L = Ma{a) sup{||ui||y: ¢ > 0}. Since t; —t;—1 — 0 as [ — oo there is an integer
ko > 0 such that (t; — t;—1)w(a) < 1/2 for I > ko + 1, where @() is defined as in
Remark 1.1. To prove assertion (a), let k > kg. We have by Lemma 2.3

I d-rA@) | <M

l=k+1

z2,Z2
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for i > k, where M = M (a)exp((2w(a) + Lz(ea)L)7) and by = #; — ;3 for [ > 1.
A simple computation gives

i J

(2.3) II 0= hmAm-) "y = [ T - mA@-) 1ty
I=kt1 I=k+1
= Y hpA(upr) [] (I—hA-1) "y
p=j+1 l=k+1

fory € Yand i > j > k. By (1.7), we apply Lemma 2.3 to the family
{A(w) + B(w)} and use the relation (1.8). This yields

i

II - hmA@_)™?

l=k+1

<M

Y)Y

for i > k, where M = Mz(a)?||S||y,z||9 || z,yexp((2w(a) + Lz(a)L)T). By this
fact the right-hand side of (2.3) is estimated by (t; —t;)Ma(a)M||y||y. Assertion
(a) follows readily from the Banach—Steinhaus theorem.

We prove assertion (b). To do so, let k& > ky. By condition (ii) and assumption
(A2) we have (Su;, — Su;_1)/hi = (A(ui—1) + B(ui—1))Su;; hence Su; =
(I — hiA(u;i—1))"1(Su;—1 + h;B(u;—1)Su;) for i > k. It is proved inductively
that

i

(2.4) Sui= [] (I = mA(u-1))"" Sux
I=k+1
+ Z (H(I— hpA(up_l))_l) hiB(ui—1)Suy
I=k+1 \p=l

for 1 > k. We use this identity to represent the difference between Su; and Su;,
and estimate it in Z by using (1.6). This yields

i ,j
18w —upllz <|| T (I — hiAu-1))"Sue = [ (= hiA(w—1)) " Sux
l=k+1 I=k+1

Z
+((t: — te) + (5 — te)) K

for i > j > k, where K = MMp(a)||S|ly,z sup{|lui|]|y: ¢ > 0}. It follows by
assertion (a) that limsup; ;_, ., ||S(u: = u;)||z < 2(7 — tx) K, and the right-hand
side tends to zero as k — oo. This implies that assertion (b) is true. |
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LEMMA 2.5: Let o > 0. If a sequence {u;} in Y, converges tou inY asi — oo,
then there is an hg > 0 such that for A € (0, hp) and every sequence {\;} which
converges to A as i — 0o, we have

hIIl (I — )\iA(ui_l))‘lui_l = (I - /\A(u))"lu inY.

1—>00
Proof: We choose hy > 0 so that Mz(a)?(1 — how()) " *heMp(a) < 1 and
how(a) < 1. Now, let A € (0,hp) and {)\;} any sequence with lim; ,oo A; = A.
There is an integer ig > 1 such that A; € (0, hg) for all ¢ > ig, and then for each
w € Y, (I — MA(w))™! € B(Y) exists by Remark 1.1. Let i > ip. If 2 is a
closed linear operator in Z then the resolvent (uI —2A)~! is analytic with respect
to p in the resolvent set. It follows from condition (A1) and (1.7) that for each
y€Y, (I —pAu) "ty and (I — p(A(u) + B(u)))~1Sy is continuous on (0, hg).
These facts and (1.8) together imply that for each y € Y,
(2.5) lim (I — M A(u)ly = (I = M(u)) ™'y inY.

1—»00

It remains to show lim;_, oo [|(7 — A A(ui—1)) " ui—1 — (I — M A(u)) " ully = 0. By
(Al) and (1.1) we have

(2.6) I = MAw)) " Hlz,2 < Mz(2)*(1 = Miw(@) ™

for w € Y,. Since

(I = MiAui)) 'y — (I - MA(u)ly
= AT — MiA(uio1)) " H(A(uior) — A(w)(I — M A(w) 1y,

we have

(T = NiA(ui—1)) ty — (I = XiA(u) " Myllz
< MMz (a)?(1 — Aw(e)) ' La(o)lluimy — ullz (I — M Aw) ylly

for y € Y, and the right-hand side tends to zero as ¢ — oo. It follows from the
Banach-Steinhaus theorem that for each z € Z,

11_1)1{.10 “(I - )\,-A(ui_l))_lz - (I - )\,’A(’LL))_IZ”Z = 0

Now, put v; = (I — MA(ui—1)) *ui—y and & = (I — MA(u)) 'u. We use
assumption (A2) to find

(2.7) Sv; = (I — AiA(ui_l))_l(Su,-_l + )\iB(u,'_l)Sv,-)
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and
(2.8) St; = (I — MAw) ™ (Su + A\ B(u)S9;).

Subtracting (2.8) from (2.7) and estimating the resultant equality by (1.6) and
(2.6), we have

1S(wi — #)llz < — XA(ui-1)) ™ = (T = MiA(w) ) (Su + AiB(u)S5;)|| 2
+ Mz(e)?(1 = Mw(@)) TH{|IS(ui—1 — u)|lz
+ Ail|(Blui—1) — B(w))Stillz + AiMp(a)||S(vi — %) ||z},

and the first term on the right-hand side vanishes as i — oo, by (2.5) and what
we have shown above. We set § = limsup;_, o, ||S(v;i — 9;)||z and take the limit
as i — oco. This yields § < Mz(a)%(1 — Aw(a)) " !AMp(a)d. Here we have used
(1.3). By the choice of hg we have § = 0; hence the sequence {v;} converges to
(I —XA(u)) " *uinY asi— oo. |

Proof of Theorem 2.1: Let € > 0 and up € Y. Let i > 1, and assume that a

1

sequence {(t;,u)}j=g in [0, 7e(¢(u0))) X Y has been chosen so that (i) through
(iv) may hold for 0 < I < i — 1. We then denote by h; the supremum of all
h € [0, €] such that

ti—1+h < 7(p(uo)),
o((I — hA(ui—1)) uim1) < me(h; (ui—1)).

By Lemma 2.2 we have h; > 0. This fact enables us to choose h; € (0,¢] so that
hi/2 < hi, tiy + hy < Te(p(ug)) and

(2.9) o((I — hiA(ui—1)) M uic1) < me(hs; o(uiot))-
Now, we put t; = t;—1 + h; and u; = (I — h;A(u;—1)) *u;—;. Clearly, condition

(i) through (iii) are satisfied. To show that condition (iv) is true in the case of 1,
we note by (iii) of Proposition 1.2 that

Te(me(ti—1; p(u0)) = Te(p(uo)) — tiz1 > hy,

since t;_; €,[0,7:(¢(uo)). Using the hypothesis of induction that ¢(u;-1) <
me(ti—1;(ug)), we have by (i) of Proposition 1.2

me(hi; p(ui-1)) < me(hisme(tio1; ©(uo)))
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and the right-hand side is equal to m.(h; +ti—1; p(ug)) by (iii) of Proposition 1.2
again. The claim that condition (iv) holds follows by combining the fact above
and the inequality (2.9).

It remains to prove condition (v). For the purpose of an indirect proof, it is
assumed that £ := lim;_, o t; < 7e({ug)). We then have

@ := sup{m.(t; p(ug)): t € [0,]} < oo.

Condition (iv) implies u; € Yz for 4 > 1. It follows from Lemma 2.4 that the
sequence {u;} converges in Y as ¢ — oo. Now, put @ = limj,cu; € Y. By
Lemma 2.5 there is an hg > 0 such that for X € (0, hg) and every sequence {X;}
with im; o0 Ai = A, im0 (I — MiA(ui—1)) tuimy = (I — MA(@)) "' in Y. We
choose h € (0, (€ A hy)/2] such that

{f+ h < 7e(p(uo)),
o((I - hA@)™1a) < mesa(h; ().

Here we have used Lemma 2.2. Set v; =%+ h —t;_; for i > 1. Since h; < 2h; =
2(t; — ti-1) — 0 and v; = h as i — oo, there is an integer 49 > 1 such that
hi < < e forall i >ip. Clearly, t;_1 + v < 7(@(up)) for all i > 1. By the
definition of h; we have

(2.10) o((I — % A(ui-1)) Tui—1) > me(ys; o(ui1))
for all i > ip. Condition (iv) implies
Te (p(ur)) 2 Te(me(tr; p(uo)) = Te (p(wo)) — t > t+h—tg > t; — i

for j > k > 0, by Proposition 1.2. By (2.9) we have inductively ¢(u;) <
me(t; — ti;p(uk)) for j > k > 0, which gives p(7) < me(t — t;_1; p(ui—1))
for 1 > ip; hence we have by Proposition 1.2,

(2.11) me(h; (@) < me(vi;(ui-1))
for i > 9. Combining (2.10) and (2.11), and taking the limit as ¢ — oo we find
o((I — hA®@)™'8) 2 me(h; (@),

which is a contradiction to the choice of h, by (iv) of Proposition 1.2. It is
concluded that condition (v) holds. |
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3. Convergence of approximate solutions and proof of main theorem

In this section we investigate the convergence of “semi-implicit” discrete
approximate solutions of (QE) and prove the main theorem.

THEOREM 3.1: Let up € Y and T > 0. Suppose that for each € > 0, there exist
a sequence {t;}1%, of nonnegative numbers and a sequence {u}i, in Y such

that they satisfy the following conditions:

(i) O0=t5 <t <---<tf <+ and T<ty <T+eg
(i) t—t5  <e fori=12,...,Ne;
(i) (uf —uwi_)/( —t5_,) = A(uS_p)uf fori=1,2,..., N., where u§ = up.

If we define a simple function u®: [0,T] = Y by

E(t)—{uo fort =0,
YW TV forte (s, t5]N[0,T) and i = 1,2,... , N,

then the following statements are equivalent:

(a) sup{|lu*(®)||y: t € [0,T)} is bounded as ¢ | 0.
(b) There is a classical solution u to (QE) on [0,T] such that

(3.1) tim(sup{lju(t) ~u(t)lly : ¢ € [0, T]}) = 0.

Proof: It is obvious that (b) implies (a). We prove the implication “(a) = (b)”.
If there exists u € C([0,T]: Y) satisfying (3.1), then we see that u is a classical
solution to (QE) on [0, 7], by letting £ | 0 in the equality

O -w=Y [ A ) ar
=141

for t € (¢5_,,t5] which follows readily from (iii). By this fact it suffices to prove
that there exists u € C([0,T): Y') satisfying (3.1). The proof will be divided into
a sequence of lemmas. Now, we assume (a), and so there exists an €9 > 0 such
that

ro = sup{||uj|ly : 0 <i < N, and € € (0,&q]} < oo.

Condition (¢2) implies

op =sup{p(u;): 0<i< N, and ¢ € (0,£0]} < o0.
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Let W(ap) be the nonnegative number defined as in Remark 1.1, and set A =
{(t,5): 0 < s <t < T}. For each € € (0,g9] with ew(ag) < 1/2, we introduce a
family {U.(t,s): (¢,s) € A} in B(Z) defined by

%

Ue(t,s) = J] (I —hfA(uiy))™

I=p+1
for s € ( t£]N[0,T] and ¢ € (t{_;,5] N [0, T]. Here and subsequently, ¢, is
defined by ts_ 1 = —oo for convenience, and we write for simplicity hf = tf —t]_,;

for 1 <1< Ne.

We start with the following lemma on the uniform boundedness of U(¢, s) in
B(Z) and B(Y) norm.
LEMMA 3.2: For each € € (0,&0] with ew(ag) < 1/2 we have

(©) Ue(t,8)llz,z < M(co)exp(Bo(t; — t5)),
(i) [[Ue(t, s)llv,y < M(co)exp(Bo(t; — t3))
fort € (t5_,,t5]N[0,T] and s € (t;_,,t5] N [0,T], where

M(ao) = |Slly,z1S7 |2,y M (a0),

Bo = 2w(an) + Lz(co)Ma(ag)ro, and By = 2w(ao) + Lz (o) Ma(co)ro.
Proof: Let e € (0, o) be such that e@(ag) < 1/2 which implies (¢ —t5_,; Jw(ag) <
1/2 for i =1,2,..., N.. By condition (iii) of Theorem 3.1 we have

(3:2) i —uialix < (8 = DA Dlly.xlluflly < Ma(oo)ro(t; — 1)

fori=1,2,...,N,. Assertion (i) is a direct consequence of Lemma 2.3. By (1.7)
we apply Lemma 2.3 again to the family {A(w) + B(w)} and use the relation
(1.8). This proves that assertion (ii) is true. 1

Let A, o € (0,£0] be such that (AV p)w(ap) <1/2andy €Y. For 0 <p < N,
and 0 < ¢ < N,,, we shall estimate the norm in Z of the difference between

i

(33) zi)\ = H (I hl A(ul 1))_1y fOI"L.:p,p-{-l,... ’NAa
l=p+1
and
J
(3.4) #= ] U-hA@) Y forj=qq+1,... N,

I=g¢+1
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It is convenient to employ the following notations:

az\ ||z —z“|| ,\)V“Z?_é;‘”(u;f) forp<i<Nyandg<j<N,

and

bf"’]”—||u —UH“(UA)V”U — u¥]| (ur #y for0<i<Nyand0<j< N,

By (ii) of Lemma 3.2 there exists C({|ly]ly) > 0 such that
sup{[|2}ly: p < i < Na} Vsup{ll#lly: ¢ < j < N} < Cllylly)

for 0 <p < N, and 0 < g < N,. The following fundamental inequalities will be
used for the comparison between z} and 2;.‘ by induction on (z, 7).

LeMMA 3.3: (i) The inequality

AR
<1 _ by w) a}
Py i,
hi + hj 7

h!f- A
(3.5) S (1+Lh*) a; 1]+hk+h#(1+Lh") i
Ahll A A
+ 5% WA h" {Klylly )X+ ) + Mllylly )4 + 004 1)}

holds forp+1 <1< Ny and ¢+ 1 < j < N, where

w=wlag), L= (Lz{a)Malao)V Mz(ag)’Lala))ry,
K(|lylly) = Mz(ao)La(co)Ma(co)roC(llylly), and
M(llylly) = Mz(0)*La(ao)C(llylly)-

(ii) o < (8 —3) — (% —t#)|N(|lylly) fori = p or j = q, where N(|y|ly) =
Mz(ao)Ma(ao)C(llylly)-

Proof: Let p+1<i< N, and g+ 1< j < N,. From the definition of z;\ and
2§ it follows readily that

() = 20)/h) = Alu}_ )2 = Aw})z} + (A(u),) - A@W))z)

and

(85 — 27_)/hf = A(w_1)2} = A(u})2
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Using the assumption that A(u}) € G(Z(y»y,1,w) we find

(3.6) (122 = 22012y = 122y = 2l uny) /B2
(12 = 2y — 172 = 22l ) /A
< w2} = 20y + I(A@E ) = A2 w2y
+ A ) ~A@))2 |-

By (1.2) and (3.2) we have

2y = 2wy < llzts = 2l (1 + Lz(ao)Ma(ao)rohy)
< a}t (1+Lh)).

We find by (3.2) again
[(A(ur) = Au))z MWy € Mz(ao)l(Auisy) — A(u)2z
< Mz(ao)La(ao)lluizy — uillzllz Iy < K(llylly)X.

Similarly we see that the last term on the right-hand side of (3.6) is bounded by
M(|lylly)b* ,. Manipulating these inequalities we have

1,5—1°
hf‘h;-‘ N
(3.7 (1 hf‘-{-h;‘w) | 2 ||(u€\)
i » R
< AR+ e
Aph
+m( (lylly)A + M(llylly)b3,)-

The desired inequality (i) is obtained by applying this argument with (p, i, A} and
(g, j, p) interchanged, and combining the resultant inequality and (3.7).
We now turn to the proof of (ii). Since 2} — 2z} ; = h}A(u} )z} we have

122 — 22|z < B} Ma(ao)C(llylly) for p+1 < i < Na. By (1.1) we have
alt < Mz(ao)lzd — yllz < Mz(eo)ll2) - 2}z

for p < 1 < N,. It follows that af‘,;z“ < (8 - t;)N(HyHy) for p < i < Ni.

Similarly, we have ap';‘ < (@ —th)N(llylly) for ¢ < j < N, ]

The following two lemmas are needed to show that the limit lim, o u®(¢) exists
in the “good” subspace Y of Z, uniformly on [0, T}.
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LEMMA 3.4: For 0 < s <t <T we have

Suf(t) = Ue(t, 8)Su®(s)

+ Z / Ue(t,5_ ) B(us (5_,))Sus () dr,

I=k+1
where i and k are nonnegative integers such that t € (t5_,,t5] and s € (t§_,,t5].
Lemma. 3.4 is readily proved by taking account of (2.4). |

LEMMA 3.5: For each z € Z we have
(1) The limit U(t,s)z := limg o U.(t, s)z exists in Z uniformly on A;
(ii} the function (t,s) — U(%, s)z is continuous in Z on A;
(il) U(t,t)z =z, and U(t,8)z = U(t,r)U(r,s)z for (t,r),(r,s) € A.

Proof: By (i) of Lemma 3.2, it suffices to prove the lemma for all y € Y. For
this purpose, let A, u € (0,¢€0] be such that (A\V u)w(ag) < 1/2andy € Y. Let us
define 2 and 2;‘ by (3.3) and (3.4) respectively, and then the inequalities (i) and
(ii) of Lemma 3.3 hold. We begin by showing the estimate on bf"’]f‘ . For simplicity
in notation we write
i j
vk = JJ(1 = whi)(1 + 2Lh})" H (1 — whi)(1+ 2LR%) !
k=1 k=1
for 0 < ¢ < Nyand 0 < j < N,. It should be noted here that zf‘ = uf‘ and
2 =ufifp=gq=0and y = uy. Settingp =¢g =0 and y = up in the
inequalities (i) and (ii) of Lemma 3.3, and multiplying the resultant inequalities

on only b, that is, the inequalities with C(|lylly) replaced by rg, we find

1]?
] — t ) or ¢ or j

and

I hA A/‘

h
Mg g Apo phip Ay
Yij b,J < h'\+h“7’ 1,77i-1,5 + h’\+h“%’3 1bm 1t h>‘+h”

KX+ p)

for 1 <1< Nyand1l < j < N, where N = Mz(ag)Ma(ag)ro and K =
Mz(ap)La(ap)Ma(ag)rd. On the other hand, we deduce from Schwarz’s
inequality that a sequence { ﬂi): '} of nonnegative numbers defined by

B = N((8) — t5)2 + M + ut)/? + KO} + )

»
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for 0 <4 < N, and 0 < j < N, satisfies the inequality

A
(38) B> LTV V. L K(A
: L7 = A wHi-1,5 A wHii—1 B 7 + 1)
h} + b h) + b R} + h

for 1 <7< Ny and 1 <j <N, One verifies inductively

Hy —

(3.9) VRN < B

for 0 <4< Ny and 0 < j < N,. (See also Kobayashi [7].)
We now turn to the estimate on a>‘ It is necessary for us to rewrite (3.5).
To do so, we use for simplicity the nota.tlon

: j
wit = [ Q-whd)(x+La)7t - T (1 -wh)(1+Lhg)™
k=p+1 k=g+1

for p <i < N, and ¢ < j < n,. Multiplying (3.5) by w; ’]"7;\’“ we find

h¥ R
A /\, Xop 3 A,n Ap ] /\, >~,.u
7:; ! 4,3 < h"+h“7’ 1,3 i-1,5%i— 1’3+h’\+k’“7”3 1 mﬂl 3,5—1
h?h? K(|lyllvy)(A +
Apl
I M(Jlylly) (724 04 5 + vt bi)
hf‘-!—h“ i—1,7%i-1,5 1,5 —174,5—

forp+1<i< Nyand g+1 < j <N, Using (3.8) and (3.9) we have by
induction on (%, j),
yitwltart < Nyl ){((E —t5) = (¢ — 8 + At - 85) + ulty —t}/?
+ K(lylly)ME — ) + u(th — t4)
+ M(llylly)BRE(E — 1)) + (8 — t))

for p < i < Ny and ¢ < j < N,. Assertions (i) and (ii) are then proved by
standard arguments. Assertion (iii) follows readily from the relation U.(t,s) =
Ue(t, U, s) for (t,7), (r,s) €A W

The proof of the implication “(a) = (b)” is finally complete by the following
lemma.
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LEMMA 3.6: There exists u € C([0,T]: Y) satisfying (3.1).

Proof: We begin by showing that
(3.10) lim(sup{ | (8) — u(®)ly + £ € 0,7])) =0,
£

if there exists u € C([0,7]: Y') such that

(3.11) Su(t) = U(t,0)Sup + /t U(t,r)B(u(r))Su(r) dr
0

for t € [0, 7], where T € (0,T)]. To this end, let ¢t € [0, 7]. Then there is an integer
7 > 0 such that £ € (#5_

zl’z

¢]. By Lemma 3.4 we have

(3.12) u (t) = tO)Su0+Z / U.(t,t5_, ) B(us (t5_))Sus (r) dr

By (i) of Lemma 3.5, we have lim. o Ue(t, 0)Suo = U(t,0)Sug uniformly on [0, 7].
We estimate B(u®(tf_,))Su®(r) — B(u(r))Su(r) by dividing it into three terms

(B(u (t-1)) — B(u(tj-1)))Su"(r), B(u(ti_1))(Su®(r) — Su(r)), and
(B(u(t_1)) — B(u(r)))Su(r),

and then using (1.3) and (1.6). This yields

| B(u (t_1))Su®(r) — B(u(r))Su(r)|z
< Lp(ag V a1)¢*(r)|1Sly,zr0 + Mp(aa)||S|ly,z¢° (r)
+ Lp(e1)p(e)l|Sly,zm1

for 7 € (t{_,t;], where
ry = sup{[lu(t)lly: t € [0,7]} and o1 =sup{p(w): lwlly <}
Here two functions ¢ and p are defined by
¢°(t) = sup{llu(n) — u(n)lly: n € [0, 2]}

and

p(t) = sup{lju(s) — u(8)lly: [s — 3| < t},
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respectively. Subtracting (3.11) from (3.12) we find

0 — iy <+ Ko | ") ar

for t € [0,7], where Kj is a positive constant and {A;} is a null sequence of
positive numbers. We now set ¢(t) = limsup, |, ¢5( ) for t € [0,7]. By Lebesgue’s
convergence theorem we have ¢(t) < Kj fo (r) dr for t € [0,7]. Application of
Gronwall’s inequality gives ¢ = 0 on {0, 7], which proves the desired claim (3.10).
Now, we define 7 by the supremum 7 € [0,7] such that there exists u €
C([0,7]: Y) satisfying (3.10). We shall show that there exists u € C([0,7]: Y)
such that (3.11) holds with 7 replaced by 7. If 7 = 0 then this fact is true. We
may assume 0 < 7 < T. By the definition of 7 there exists u € C([0,7): Y) such
that lim. o u®(t) = u(t) in Y, uniformly on every compact subinterval of [0, 7).
Clearly, {|u(t)|]ly < ro and ¢(u(t)) < ag for t € [0,7). We have by Lemma 3.4,

Su(t) = U(t, s)Su(s / U(t,r)B(u(r))Su(r)dr

for0<s<t<7 Let0<s<7ands<ti<7 Wefind by the equality above
IS (u(t) — u(®)liz < UL, 8)Su(s) — U(L, 8)Su(s)llz + ((t — 5) + (£ - £))C,

where C = M (op)exp(BoT)Mp(cw)|S|ly,zro- By (ii) of Lemma 3.5 we see that
the first term on the right-hand side vanishes as ¢, 1 7. As t,f 1 7, the last term
converges to 2C (T — s), which tends to zero as s 1 7. This proves that the limit
lim¢47 u(t) exists in Y, and so the desired claim is obtained.

We have only to show T = T by the fact which was proved in the first part.
Assume to the contrary that 7 < T. By what we have just proved, there exists
u &€ C([0,7]: Y) satisfying the intergal equation

(3.13) Su(t) = U(t,0)Sup + /Ot U(t,r)B(u(r))Su(r) dr

for t € [0,7]. By a fixed point argument one finds a § > 0 so that the integral
equation

{(3.14) Su(t) = U(t,7)Su(T) + /_ U(t,r)B(v{r))Su(r) dr

has a unique solution v € C([7,7 + §]: Y). (See also {9, Lemmas 3.5 and 3.6].)
Substituting (3.13) with £ = T into (3.14) and using (iii) of Lemma 3.5 we have

T t
Su(t) = U(t, 0)Suo + /0 U, 7) B(u(r))Su(r) dr + /_ U, r)B(o(r))So(r) dr
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for ¢ € [7,7+4]. It follows that u can be extended to an element of C([0,7+0]: ')
which satisfies (3.11) with 7 = 7+ 4, by defining u(t) = v(¢) for t € [7,7+ . By
the first part of the proof we see that u satisfies (3.10) with 7 = 7 + §, which is
a contradiction to the definition of 7. ]

Proof of main theorem: Let uyp € Y,, and T > 0. Since limg ) 7.(p{up)) =
T(p(ug)) = o0, there is an g € (0,1] so that T+ 1 < 7.(¢(ug)) for € € (0,¢¢]. By
Theorem 2.1, for each € € (0,¢o] there exist a sequence {t{}Y, of nonnegative
numbers and a sequence {ug } V<, in Y such that they satisfy conditions (i) through
(iit) of Theorem 3.1 and

(3.15) o(uf) < me(tf; p(uo))

for: =1,2,...,N.. Since m.(t; o(ug)) 4 m(t; p{ug)) uniformly on [0,T + 1] as
€} 0 (by (ii) of Proposition 1.2), we have

ag = sup{mc(t; p(up)): € € (0,&9) and t € [0,T + 1]} < co.

It follows that @(uf) < ag for ¢ = 1,2,... , N, and € € (0,¢p]. Condition (¢1)
implies that statement (a) of Theorem 3.1 is true. From Theorem 3.1 we deduce
that the (QE) has a classical solution u on |0, 7] satisfying (3.1). By (3.15) we
have o(u(t)) < m(t; p(ue)) for ¢t € [0,T]. Since T > 0 is arbitrary, the desired
claim follows from standard arguments together with Theorem 1.1. ]

4. Applications to hyperbolic equations

In this section we shall apply our abstract theory to Cauchy problems of three
nonlinear hyperbolic equations.

Let us first consider the hyperbolic equation
(4.1) u” (1) + A2u(t) + B/ (A 2u(t)|) Au(t) =0 for t >0

in a real Hilbert space H with the inner product (-,-) and the associated norm
| -|. Here A is a positive selfadjoint operator in #, and so there is a ¢ > 0 such
that (Au,u) > clu|? for u € D(A). It is assumed that 8 € C?([0,00): R) satisfies
B(0) =0 and B'(r) > mo > 0 for r > 0. This is the abstract version of damped
extensible beam equations (see Patcheu [13]).

By V and W we denote real Hilbert spaces D(.A) land D(A?) equipped with the
inner products (u, @)y = (Au,.Ad) for u,i € V, and (u, @)y = (A%u, A%q) for
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u, % € W, respectively. We shall prove that for each (¢, %0) € W x V, problem
(4.1) has a unique solution u in the class

C2([0, 00): W) NCY{[0,00): V) NC([0,00): H)

satisfying the initial condition (u(0}, u'(0)) = (¢o, %s). To this end, let (¢p,%o) €
W x V and set Eg = || + |Ado|? + B(|.AY24y|?). We first note that a func-
tion u defined on [0,00) is a solution of (4.1) satisfying the initial condition
(u(0), 4’ (0)) = (¢, vo) if and only if it is a solution of

(4.2) u(t) + A%u(t) + B'(|AY?u(t)[D) Au(t) =0 fort >0

with the initial condition (u(0),%’(0)) = (¢o, o), where 3 is defined by
By = | 86 n (Bofma)) ds
0
for 7 > 0. Indeed, if u is a solution of (4.2) on [0,00) then

& (WP + MaOP + B4 u)P) =0 fort>0

which follows easily by taking the inner product (4.2) with 2«/(t). By the
assumption of 8 we have |A/2¢|? < Eo/mg and B(r) > mgr for r > 0; hence

mol A *u()[* < Iol* + |Adol* + B(A>d0l?) = Eo

for t > 0, by which we see that v is a solution of {4.1) on [0,00). The converse is
proved in the same way.

Now, we shall study the Cauchy problem for (4.2). For this purpose, we convert
the differential equation (4.2} into the first order system

(d/dt)(u(t), v(t)) = (A(u(t), v(t)))(u(t), v(t)) fort>0

in the Hilbert space Z (= X) = V x H, where {A(w, 2): (w,2) € Y} is a family
of linear operators in Z defined by

(A(w, 2))(u,) = (v, —A%u — §'(JAY*w|?) Au)

for (u,v) € D(A{w, 2)) =Y := WxV. By the positivity of A we have clu| < |Au|
for u € D(A); hence |AY?u]? < (Au,u) < JAu|?/c for u € D{A), and c?ju] <
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cJAu| < |A%u| for u € D(A?), by which we see that Y is continuously imbedded
in X, and find two inequalities

(4.3) lw|? < a/ct,
(4.4) (A2 < o/

for (w, z) € Y,. Let us define a functional ¢ on ¥ by
o(u,v) = [ully + oI} (= [, 0)lIF)

for (u,v) € Y. Clearly, ¢ is continuous on Y and satisfies conditions (¢1) and
(¢2). We introduce a family {(-,")qw,): (w,2) € Y} of inner products in Z
defined by

((u, ), (8,9)) w,z) = B (A *w]*) (A P, AYV24) + (Au, Ad) + (v, D)

for (u,v),(4,0) € Z. Condition (N1) is easily checked by (4.4). To prove (N2)
let (u,v) € Z with (u,v) # (0,0), and (w, 2), (@, 2) € Y. Then we have

(s )l ey (e, )1 2y = N, )35 )
Il (1 0) w2y + 11 0) 0,2 1 (2, V)l 0,29
< BUAZu?) - B(A0p2)

- 2my

+1

+ 1.
By (4.3) and (4.4) we have

16'(L A wf*)— B (| A 2]
(4.5) < Ly (A 2w v |AYZ0P ) A(w — ), w + @)
< 2a1/2L5, (a/)||w — b||v/c?,

where L (7) denotes the Lipschitz constant of B on [0,7]. It follows that
condition (N2) is satisfied.

To prove condition (Al), let (w,z) € Y. A straightforward computation yields
((u, ), (A(w, 2)}(, v)) (w,») = 0 for (u,v) € Y. To prove the range condition, let
(f,9) € VxH and A > 0. A bounded bilinear form afw;-,-]: V x V — R defined
by '

alw;u, 4] = (u, @) + N (Au, Ad) + X3 (| AV 2w]?) (A 24, AV 24)

satisfies the estimate a[w;u,u] > A?|u|?, which means that afw;-,"] is coercive
onV x V. A functional F' on V defined by F (&) = (f, %) + A(g,4) is linear and
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bounded. By Lax-Milgram’s theorem there exists u € V such that a[w;u,d] =
F(4) for all & € V; namely

(u, &) + N (Au, Ad) + V25 (J AV 2w|?) (A ?u, A20) = (f,4) + Mg, @)
for all & € V. Put v = (u — f)/A € V. By the equality above we find
(Au, Ad) = ((g — v)/A— B/ (A ?w]*) Au, @)
for & € V, which implies
Au € D(A*) = D(A) and A%u = (g —v)/) - B (A ?w]?) Au.

It follows that R(I — AA(w,2)) = Z for all A > 0. It has been proved that
condition (A1) holds with w(a) = 0. Condition (A2) is satisfied with B(w,z) =0
by choosing the isomorphism
A 0
5= (3 %)

of Y onto Z. By (4.5) we obtain the desired inequality (1.5), which implies the
fact that A(-) € C(Y; B(Y,X)) and (1.4), since X = Z in this problem.
We shall check condition (G). To this end, let (ug,v9) € W x V and set

(4.6) (ux,va) = (I = MA(uo,v0)) ™ (w0, vo)-

By Remark 1.1 there exists Ay > 0 such that (ux,vs) € W x VY for A € (0, Ao}
and (ux,vx) = (ug,v0) in WX V as A | 0. (4.6) is written as

(4.7 (ux — ug)/A = vy,
(4.8) (vx — v0) /XA + Aluy + B'(|AY 2ug|?) Auy, = 0.

By (4.7) we have vy € W; hence A%v) makes sense. Taking the inner product of
(4.8) with A%v, we have by (4.7),

(Avx, Avx — Avg) /A + (Aux — Aug, A%un) /A + B'(|AY ?ug|) (Avy, A%uy) = 0.
By the inequality

(4.9) (lul? ~ ]*)/2 < (u,u — )
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for u,v € H, we have

(JAvA[* = [Avo )/ A + (JAPux|? — | A%uo|?) /A < 28" (| A 2uo )| Ava|[A%uy |-
An application of Young’s inequality gives

(p(un,va) — @(ug, v0)) /X < ap(uy,vy),

where a = sup{@'(r): r > 0} < co. This implies that condition (G) is satisfied
with a comparison function g defined by g(r) = ar for r > 0, since (uyx,vy) —
(uo,v0) in WxVasAlO.

We next consider the quasi-linear wave equation of Kirchhoff type

(4.10) u(t) + B (| AY2u(t))?) Au(t) + v/ (t) =0 fort >0

in a real Hilbert space H with the inner product {-,-) and the associated norm
| -|. It is assumed that A is a nonnegative selfadjoint operator in H, v > 0 and
that 8 € C?([0,00): R) satisfies 8(0) = 0 and §'(r) > mg > 0 for r > 0. This
problem has been intensively investigated. (For example, see Heard (3] and Ono
(12].)

We apply the main theorem to prove the existence and uniqueness of a global
solution u of (4.10) in the class

C([0,00): W)Y N C([0,00): V) N C*([0, 00): H),

where W and V are two real Hilbert spaces D(A) and D(A'/?) equipped with
inner products (u, @)y = (u, @) + (Au, Ad) for u,4 € W, and (u, @)y = (u, @) +
(AY 24, AV/24) for u, 1 € V), respectively.

Now, we take Z = X =V x H and Y = W x V. Clearly, Y is continuously
imbedded in X, since |AY2u|? = (Au,u) < |uf},/2 for u € D(A). (4.10) is
converted into the first order system in Z

(d/dt)(ult), v(t)) = (Alu(t),v())(ult),v(t)) fort=0.
Here {A(w, 2): (w,z) € Y} is a family of linear operators in Z defined by
(A(w, 2))(u,v) = (v, = (A *w|*)Au — vv)
for (u,v) € D(A(w,2)) == Y. Let us consider a functional ¢ on ¥ by

P(u,) = (ruto2 + o> +28(1AY2uf?) + |42 (vu+ ) 2+ 6/ (|4 20l Aul?) /2
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for (u,v) € Y. Clearly, ¢ is continuous on Y. By the assumption of 5 we have
mor < B(r) < Mg/ (r)r for r > 0, where Mg/ () = sup{#'(s): s € [0, 7]} for r > 0.
It follows that

(1 A mo)ii(w,9)1%/2 < 9w, v) < (1V My (JA2u?))lI(w, v)* /2
for (u,v) € Y. Here ||(%,v)| is a norm in Y defined by
1w, )| = (v + v + [o]? + 2|4 2uf? + |AY2(vu + 0)* + | Aul?) /2,
which is equivalent to the norm ||(u, v)||y; hence there are C,, > ¢, > 0 such that
coll(uwv)y < p(u,0) < C,(1V Mg (A 2u?)]| (u, v)I3

for (u,v) € Y. This means that ¢ satisfies conditions (¢1) and (¢2). We intro-
duce a family {|| - ||(w,2): (w,2) € Y} of norms in Z defined by ||(u, v)||(w,) =

((u, ), (u, U))Zﬁz) where

<(ua U)v (’&’7 '0)>(w,z) = ﬂ,(lAl/z’U)'z)(Al/zua A1/2ﬁ‘> + (u’ﬁ'> + (’U,’ﬁ)

for (u,v),(%,9) € Z. By an argument similar to that in the first example, it is
shown that the family {|| - ||(w,»): (w, 2) € Y} satisfies condition (N) and that the
family {A(w, z): (w, z) € Y} satisfies condition (A) by taking

[T+ A2 0
S"( 0 (I+A>1/2)

as an isomorphism of Y onto Z. Here we note that the range condition is checked
by considering a bilinear form a[w; .- on V x V defined by

alw;u, 4] = (1+ W) (u, ) + N4/ (| A 2w|?) (AY 2, AY24)

and a linear functional F on V defined by F(4) = (1 + Av)(f,4) + X(g, 0).

It remains to check condition (G). To do so, let (ug,vo) € Y and define (ux,v»)
by (4.6). By Remark 1.1, there exists Ag > 0 such that (ux,vy) € Y for A € (0, Ao]
and (ux,vs) = (uo,v0) inY as A | 0. (4.6) is written as

(4.11) Ux — Uy = AU,
(4.12) va — vo + A (|AY 2up)?)Auy + Avvy = 0.
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Taking the inner product of (4.12) with vy we have, by (4.11),
(4.13) (vx, va — vo) + B'(JAY 2ug|?) (Aux, ux — uo) + Avfual® = 0.

We take inner products of (4.11) and (4.12) with v%uy and vu, respectively, and
sum up the resultant equalities. This yields

V2 (ux — g, up) + 1(va — vo,ur) + W' (A 2ug )| A uy[? = 0.
Addition of this and (4.13) gives
(vux +vx, v(us — uo) + (ux — v0)) + B'(JAY ?ug|?) (Aux, ux — ug) < 0.
By this inequality and (4.13) we have
(levun +val? = levug + vol?)/2 + B'(|AY 2ug[*) (| A 2us|® — | A 2ug[?) /2 < 0
for each € = 0,1. Note that if o € C?([0,00): R) then

(| A ?up[?) — (| A 2uo|?)
(4.14) (

/ 1 o’ (0] AY 2upf? + (1 - 6)| A %0 ?) de) MA(uy + ug), vr)-

0

Making use of (4.14) with ¢ = 8 we have
(levus + va? — levao + wo[*)/2X + (B1AY2u?) — B(1AY ?uql?)) /22

1
(4.15) + % (/0 {B' (1A 2ug|?) — B (0]AY 2uy |2 + (1 — 9)|A1/2u0|2)}d9)
X (A(ux +uo),va) <0

for each € = 0,1. By (4.11) we have vy = (u) — up)/A € D(A); hence Avy makes
sense. We take inner products of (4.12) with Avy and v.Auy respectively and
then use (4.11). This yields two equalities

B (| AY 2ug|?) (Aun, A(ux — ug))
+ (AY 20y, A% (v — vg) + vAY(uy —ug)) = 0

and

(vAY uy, A2 (vy — vo) + vAY2(uy — ug)) + Avf (| AV 2ug)?)| Auy|? = 0.
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Adding these equalities we find
(|VA1/2U)\ +‘/41/21)/\|2 _ |V.A1/2U() +A1/21}0|2)/2)\
+ B (|AY o)) (JAux® — |Auol*)/2X + vB' (| AV 2uo[*) | Aus[? < 0.
We write the second term on the left-hand side as
(B (1A 2ux ) Aus|” — B'(JAY ug|*) | Auo ) /27
— (B (|A P us?) — B'(| A Puo?)) | Aux[? /2

and use (4.14) with ¢ = #’. This yields
(A2 (vux +vx)? = [AY2(vuo + v0)[?) /2

+ (B (A2 us [*)| Aua [P — B'(JAY uo )| Auo|?) /22

1
(A= 3 ([ 870U 2+ (= 0)L4 200 ) )
0

x (A(ux +U0),vx)}IAu,\}2 < 0.

(4.16)

Adding (4.15) with ¢ = 0,1 and (4.16), and taking the liminf as A | 0 we find

lim inf (o (ua, va) — p(uo,v0))/A
+ (B (| A ugP)y — B"(|AM 2o |*){Auo, vo))| Auo|* < 0.

This means that condition (G) is satisfied with a function g of the form
g(r) = ((p(r) — mov)r) vV 0

where p is a nonnegative continuous function with p(0) = 0. It should be noted
that the function g defined above is a comparison function, by (ii) of Example
1.1. We therefore conclude that there is an r¢ > 0 such that for each (¢, %q) €
D(A) x D(AY?) with ||(¢o, %0)|lwxv < ro, problem (4.10) has a unique solution
u in the class

C([0,00): W) C*{[0,00): V) N C?([0,00): H)

satisfying the initial condition (u(0),u'(0)) = (¢o, %o)-
Finally we give an application of our abstract theory to the Cauchy problem
for the quasi-linear wave equation

{ Giu = v,

4.1
(4.17) Oyv = 0,0" (u) — vv.
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Here v > 0 and it is assumed that 0 € C3(R) satisfies ¢(0) = ¢/(0) = 0 and
o"(r) = ¢o >0 forr e R

To prove the global existence of solutions, we apply the main theorem with
three Banach spaces Z = L?(R) x L2(R), X = H'(R) x H!(R) and Y = H%(R) x
H?(R). (4.17) is reduced to the abstract evolution equation

(d/dt)(u(t), v(t)) = (A(u(t), v(t)))(u(t),v(t)) fort=>0

in the real Banach space Z, where {A(w,2): (w,2) € Y} is a family of linear
operators in Z defined by

(A(w, 2))(u, v) = (Oxv, 0" (w)Ozu — vv)

for (u,v) € D(A(w,z)) = HY(R) x H'(R). We use a nonnegative continuous
functional ¢ on Y defined by

o(u,v) = = / (V% + |[vu + 0v|* + [vOpu + 20|) dx
—00
+ %/ o (u)(|0:ul* + |02u|?) dz +f o(u) dz.

— 00

It is easily seen that

cull(w, ) < @(u,v) < Co(1V My(lfull )l (s 0) 12 12

for (u,v) € H*(R) x H*(R), where Mi(r) = sup{jo®)(s)|: |s| < r} for r > 0.
This means that conditions (¢1) and (¢2) are satisfied. Let us consider a family
{{Yw,s): (w,2) € Y} of inner products in Z defined by

(0,0 6 Ny = [ (0" wla)u@)a(o) +v(o)o(o) do
for (u,v), (4,9) € Z. We recall the following fact needed for later arguments:

(4.18) HYR) c L®(R) and |[fufleo < [fullgn for w € H(R).

If (w, 2) € Y, then we have by (4.18), llo”(w(-))||L=~ < Ma(y/e/c,) and

llo"(w()) = o"@())llze < Ma(llwllzse V ll@llzeo)llw = bl o

4.19
(4.19) < Ms(vaje,)||(w,2) — (i, 5)] x-
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These estimates imply condition (N) in a way similar to the derivation in the
first example. If (w,z) € Y, then o”(w(-)) € WH**(R) and [|0,0" (w(:))||L= <
Mjs(y/a/c,)\/a/c,. By a routine computation we see that for each (w, 2) € Y,
A(w, z) — w(a)] is dissipative in Z(,, ;) where w(a) = M;(v/a/e,)V/alc,/2,/c.

Similarly to the preceding examples, the range condition is checked by using
Lax—Milgram’s theorem. It follows that for each (w,z) € Y,,

A(w, Z) S G(Z(w,z)a 1,(4)((1)),

which proves condition (A1). (See also [8, Proposition 5.7}.) To prove condition
(A2), we consider the operator S defined by

S(u,v) = (u — 82u,v — 82v)

for (u,v) € Y, which is an isomorphism of Y onto Z with the inverse S~ (u,v) =
(Ru,Rv)/2 for (u,v) € Z, where R is defined by

Ru)@) = [ et dy
for u € L?(R). We note here that for u € L%(R),
(4.20) Ru € H3R) and |8, Rullm < CllullLz
for some C > 0. The relation SA(w,2)S~! = A(w, 2) + B(w, 2) holds with
(B(w, 2))(u,v) = (0,-830" (w(z)) - Bo(Ru)(z)/2 — 80" (w(2)) - 87 (Ru)(z))

for (u,v) € Z and (w,z) € Y. The desired claim that B(w,z) € B(Z) is
proved by (4.20) and the fact that 80" (w(-)) = ¢® (w(-))0,w(-) € L>®(R) and
820" (w(-)) = oW (w()(@w()? + o® (w(-))8Z(w(-)) € L*(R), if w € H*(R).
To prove (1.3), we estimate the L norm of the terms involving ¢(¥) and use
(4.18). This yields

1820 (w(-)) = 820" (W(-) |2 V 190" (w(:)) — Ba0” (@())]| v

(4.21) < C(llwligz v lldllg2)llw — @l 42

for w, € H%(R). The desired inequality (1.3) is obtained by (4.20) and (4.21).
Since (050" (w("))l|zee < Ma(llwlle)llwlizz, we find |A(w, 2)lly,x < C(|lwllaz2)
for (w,z) € Y, which implies (1.4). The fact that A € C(Y;B(Y, X)) follows
immediately from the inequality obtained by (4.19) and (4.21) that

| A(w, 2) — A(D, 8)|lv,x < Clllwllgz V [[dllg2)llw — @] a2
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for (w, z), (w,2) € Y. Since

1
= ( /0 o® (w(z) + (1 - O)w(x)) do) (w(z) — w(z))dyu(z),
we have, by (4.18),
(0" (w) — " (@))0zull 2 < Ma(llwllern V 1@l )18z ull r flw — @] 2

for u € H(R) and w,w € H'(R), from which (1.5) follows readily. It is shown
[8, Proposition 5.8] that condition (G) is satisfied with a comparison function g
of the form (1.12). All assumptions of main theorem are satisfied, and conse-
quently there exists 7o > 0 such that for each (ug,v) € H%(R) x H?(R) with
|(uo, v0)|| 2 x 2 < To, problem (4.17) has a unique solution (u,v) in the class

C([0,00): H*(R) x H*(R)) N C*([0,00): H (R) x H'(R))
satisfying the initial condition (u(0, z),v(0,z)) = (ue(z), vo(z)) for z € R.
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