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A B S T R A C T  

The problem of existence and uniqueness of global classical solutions of 
abstract quasi-linear evolution equations is considered in a general Banach 
space. The results obtained here are applied to the initial value problems 
for hyperbolic partial differential equations. 

This paper is concerned with the abstract quasi-linear evolution equation 

u'(t) = A(u(t))u(t)  for t _> 0, 

(QE) u(0) = u0 

in a real Banach space Z, where {A(w) : w E Y} is a family of closed linear oper- 

ators in Z and Y is another real Banach space which is densely and continuously 
imbedded in Z. 

There are at least two different operator-theoretical approaches to the exis- 

tence problem for quasi-linear hyperbolic partial differential equations. One is 

the theory of quasi-contractive nonlinear semigroups, which was applied to first 

order quasi-linear equations in several space variables by Crandall [1]. However, 

this method breaks down for a broad class of systems, since the quasi-contractive 

continuity cannot be expected in that  case. A new fully nonlinear existence 

theory covering the quasi-linear examples has been presented by Crandall and 

Souganidis [2]. An at tempt  to develop the theory of nonlinear semigroups of Lip- 

schitz continuous operators and not quasi-contractions is found in Kobayashi and 

Tanaka [8]. The other is the theory of abstract quasi-linear evolution equations 

initiated by Kato [5], which has been constantly recognized to be important from 
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both theoretical and practical points of view. Most of the literature dealing with 

such quasi-linear evolution equations is devoted to the study of local existence 

of classical solutions. Among others, Kobayasi and Sanekata [9] succeeded in 

proving an existence theorem of local classical solutions without assuming the 

reflexivity of Z and Y, and their result was improved by Kato [6] so that  it can 

be applied to the system of first order quasi-linear equation in C(R m). So far 

sufficient conditions have been investigated extensively for quasi-linear evolution 

equations to possess local classical solutions. However, it seems to us that  very 

little is known about sufficient conditions on {A(w): w E Y} for the classical 

solutions to exist globally in time, while there are several works concerning the 

global existence of solutions of quasi-linear hyperbolic partial differential equa- 

tions such as the wave equation of Kirchhoff type. 

We are here interested in developing the latter abstract theory so that  it is 

applicable to the problem of existence and uniqueness of global solutions of quasi- 

linear hyperbolic systems; hence our purpose is to discuss the problem of global 

existence of classical solutions of quasi-linear evolution equations of the type 

(QE). Equation (QE) may have only local classical solutions provided that  A(w) 
is local quasi-dissipative for each w E Y, and it is necessary to consider the growth 

of classical solutions. Here we employ a nonnegative continuous functional ~o on 

Y to define the local quasi-dissipativity of A(w) and specify the growth of a clas- 

sical solution u of (QE) in terms of the real-valued function ~o(u(.)). In case of 

concrete partial differential equations the use of such a functional ~o corresponds 

to a priori estimates or energy estimates which ensure the global existence of the 

solutions as well as their asymptotic properties. It should be noted that  the idea 

of the localization with respect to ~o is affected by the Lyapunov method and that  

the present paper is similar in spirit to Oharu and Takahashi [11] discussing non- 

linear semigroups associated with semilinear evolution equations. The Lyapunov 

method for nonlinear semigroups is found in Pazy [14] and Walker [15]. 

In Section 1 we formulate typical hypotheses on A(w) in a local sense by using 

a functional ~o and investigate the uniqueness of classical solutions of (QE). This 

section contains the statement of main theorem and some of basic properties of 

maximal solutions of scalar ordinary differential equations used in later argu- 

ments. Section 2 provides the construction of approximate solutions for (QE) 

where the "semi-implict" discrete scheme 

(ui - ui-1)l(ti - ti-1) = A(ui-1)ui for i = 1, 2 , . . . ,  

O = t o < t l  < t 2  < " - < t i < ' "  

is used instead of the "fully implicit" discrete scheme. 
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Section 3 discusses the convergence of approximate solutions constructed in 

Section 2. The problem of this kind has been studied by Crandall and Sougani- 

dis [2]. Our result (Theorem 3.1) is different from theirs in that it shows the 

convergence of solutions of the discrete problem in a "good" subspace Y of Z. 

Typical examples such as damped extensible beam equations and quasi-linear 

wave equations are presented in final Section 4 to illustrate our abstract theory. 

1. Pre l iminar i e s  and m a i n  result  

In this section we state the main result of this paper. We start with three real 

Banach spaces Y C X C Z, with all the inclusions continuous and dense; hence 

there exist cx  > 0 and cy > 0 such that Ilxllz <<_ cz l lx l lx  for x �9 X, and 

IlYllx <- cyIlYllY for y �9 Y. It is assumed that Z and X have the same topology 

on a bounded set of Y in the following sense: Given any bounded subset B of 

Y and r > 0, there exists ~ > 0 such that x , y  �9 B with IIx - Yllz < 5 implies 

II x - YlIx < s. We consider a continuous functional T: Y --+ [0, co) such that  

(~1) for each a > 0 the set Y~ = {w �9 Y: ~(w) < a} is bounded in Y, 

(~2) ~ is bounded on each bounded subset of Y. 

We now set up basic hypotheses in a local sense on the operators A(w) appearing 

in (QE) by means of the functional T. 

(N) For each w �9 Y there exists a norm I1" II(~) in Z with the following 

properties: 

(N1) For each a > 0 there exists M z ( a )  > 1 such that  

(1.1) Mz(a) - l [[z[ Iz  <_ [[z[[(w) _< Mz(a)[[z[[z 

for z �9 Z and w �9 Y~. 

(N2) For each a > 0 there exists L z ( a )  >>_ 0 such that  

(1.2) Ilzll(~) < IHI(~)(1 + Lz (a ) l lw  - ~vllx) 

for z �9 Z and w, ~ �9 Ya- 

It should be noted here that Hughes et al. [4] first proposed the equivalent 

norms satisfying conditions (N1) and (N2), and established the abstract theory 

which is applied to second-order quasi-linear hyperbolic systems on R "~. 

(A) The family {A(w): w �9 Y} of closed linear operators in Z satisfies the 

following conditions: 

(A1) For each a _> 0 there exists w(a) > 0 such that 

A(w) �9 G(Z(,o), 1, w(a)) 
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for w e Y~, where Z(~) denotes the Banach space Z with the norm [[. [[(~). Here 

and subsequently, 92 E G(X, M, fl) is written for the infinitesimal generator 92 of 

a semigroup {T(t): t _> 0} of class (Co) on X satisfying [[T(t)[[x,x _< Me at for 

t_>0. 
(A2) There exist an isomorphism S of Y onto Z and a family 

{B(w): w E Y} in B(Z) such that  

SA(w)S -1 = A(w) + B(w) 

for w �9 Y, where the family {B(w): w E Y} satisfies the following properties: 

For each a > 0 there exists LB (o~) ~_ 0 such that 

(1.3) liB(w) - B(~v)l[z,z ~ LB(a)l[w - ~llY 

for w, ~b E Ya. 
(A3) For w E Y, D(A(w)) D Y, and A E C(Y; B(Y, X)). For each a _> 0 

there exist MA(a) ~ 0 and LA(a) ~ 0 such that 

(1.4) ltA(w)llv, x <_ MA(a) for w E Y=, 

(1.5) I[A(w) - A(@)[[y,z <_ LA(a)[[w -- w[[z for w,~b 6 Yo. 

Remark 1.h (i) From (1.3) and property (~1) it follows readily that for each 

a > 0, there exists MB (a) > 0 such that 

(1.6) [[B(w)Hz,z ~_ Ms(a) for w E Y~. 

(ii) For each w 6 Ya, we have 

(1.7) A(w) + B(w) E G(Z(~), 1,~(a)),  

(1.8) (I - hA(w) ) - lw  = S-X(I - h(A(w) + B(w) ) ) - l  Sw 

for h > 0 with h~(a) < 1, where we set ~(a)  = w(a) + Mz(a)2MB(a). 
The first assertion is proved by the perturbation theorem and the following 

estimate which follows from (1.1) and (1.6): 

IiB(w)iiz(,~,z(,.) <_ Mz(a)2Ms(ot). 

The second assertion follows from condition (A2). 
(iii) For each w 6 Y, there exists h0 > 0 such that  (I - hA(w))- lw E Y for 

h 6 (0, ho], and limh,0(I -- hA(w))-lw = w in Y. This fact follows from (ii). 
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Because of the localized conditions s ta ted above, problem (QE) may have only 

local classical solutions by the theory established in [6] and [9]. Hereafter  we 

mean by a c l a s s i ca l  s o l u t i o n  u to (QE) on J = [0, T] or [0, T) with 0 < ~- < cxD 

tha t  u G C ( J :  Y )  N C I ( J :  X )  and the (QE) is satisfied for t c J .  A classical 

solution to (QE) on [0, :x~) is called a g loba l  c lass ica l  s o l u t i o n  to (QE). 

Th roughou t  this paper  we may assume cx  = cy  = 1 wi thout  loss of generality. 

We recall the following uniqueness theorem of classical solutions to (QE) with 

proof. 

THEOREM 1.1: For  each  T > O, t h e  (QE) h a s  a t  m o s t  o n e  c lass ica l  s o l u t i o n  on  

[0, T] .  

P r o o ~  Let  T > 0 be fixed arbitrarily. By u and v we denote  two classical 

solutions to (QE) on [0, T], and set ro = s u p { l l u ( t ) l l y  V I l v ( t ) t ] y :  t G [0,T]}. 

Condi t ion (~2) implies a0 = sup{~(w):  [[wlly _ r0} < co. To prove u = v on 

[0, T], consider the function r  = [lu(t) -v( t)[ l (u( t))  on [0, T]. We first show 

tha t  r is continuous on [0, T]. To this end, let s, t E [0, T]. By (1.2) we have 

r  - r  < ( l i u ( t )  - v ( t ) l l ( u ( ~ ) )  - I l u ( s )  - v ( s ) t ] (~ , (~ ) ) )  

+ l i u ( t )  - v( t )H(~(s) )Lz(ao) l]u( t  ) - u(s)  l lx.  

By (1.1) the r ight-hand side is bounded by 

M z ( a o ) l l u ( t )  - v ( t )  - ( u ( s )  - v ( s ) ) [ l z  + 2 r o M z ( a o ) L z ( a o ) l i u ( t )  - u ( s ) l l x .  

This  implies the continuity of r on [0,T]. Now, we compute  D_r  where 

D _ r  = l iminf  (r  - r  - h ) ) / h  
h$0 

for t E (0, T]. Let  t e (0, T] and h > 0 such tha t  t - h  e [0, T]. Then  

(r  - r  - h ) ) / h  is wri t ten  as 

(1.9) (]lu(t) - v( t ) i l (~( t )  ) - I lu(t  - h)  - v ( t  - h ) t i ( ~ ( t ) ) ) / h  

+ ( l lu ( t  - h )  - v ( t  - h)ll(u(t) ) - l tu( t  - h )  - v ( t  - h ) t l ( ~ ( t _ h ) ) ) / h  , 

and the first t e rm on the r ight-hand side tends to [u(t) - v ( t ) ,  u ' ( t )  - v ' ( t ) ] (~( t ) )  

as h $ 0, where Ix, Y](~(t)) is defined by 

[x, y](u(O) = ~ (llxli(~(~)) - ltx - hyll(~,(,)))/h. 
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By condition (A1) and (1.5) we have 

[~(t) - v ( t ) ,  u '  ( t )  - v'(t)](u(,)) 

= [u(t) - v(t), A ( u ( t ) ) ( u ( t )  - v( t ) )  + (A (u ( t ) )  - A(v( t ) ) )v( t )] (~( t ) )  

<_ w ( a o ) i i u ( t )  - v(t)li(~(t)) + M z ( a o ) 2 L A ( a O ) l i u ( t )  -- v(t)ll(u(t))ro. 

By using (1.2), the last term on the right-hand side of (1.9) is majorized by 

liu(t - h) - v ( t  - h ) l l (~( t_h) )Lz(ao) l lu ( t  ) - u ( t  - h ) l l x / h ,  

which tends to flu(t) - v( t ) lJ (~( t ) )nz (ao) l lu ' ( t ) i l x  as h $ 0. We have l iu ' ( t ) l l z  < 

IJA(u(t))l ly,  xJ[u( t ) l lY  <_ MA(~o) ro .  It follows that D_r  <_ floe(t) for t E 

(0,T], where/30 = w(a0) + M z ( a o ) ~ L A ( a o ) r o  + Lz ( (~o )MA(ao) ro .  Solving this 

differential inequality we find r < exp(~0t)r for t E [0, T]. Since r = 0 

we have u = v on [0, T]. | 

In our setting, problem (QE) may have only local classical solutions, and it 

is necessary to consider the growth of classical solutions. Here we specify the 

growth of a classical solution u(.) of (QE) by means of the function ~(u(.)). A 

nonnegative continuous function g on [0, c~) is called a c o m p a r i s o n  f u n c t i o n  

if there is an s0 > 0 such that T(a0) = C~, where [0, ~-(~)) denotes the interval 

of existence of the non-extensible maximal solution m(t ;  ~) of the initial value 

problem 

(1.10) r ' ( t )  = g (r ( t ) )  for t _> 0, and r(0) = ~ .  

We choose such a comparison function g and consider global classical solution 

u(.) of (QE) satisfying the growth condition 

(1.11) ~(u ( t ) )  <_ m ( t ; ~ ( u o ) )  for t _> 0 

for the initial data  u0 E Y~o" We give here two typical examples of comparison 

functions. 

E x a m p l e  1.1: (i) Let a, b >_ 0. A function g defined by g(r) = ar  + b for r >__ 0 

is a comparison function, and the associated non-extensible maximal solution of 

(1.10) is given by re(t; a)  = e~ta + b fo e ~(t-s) ds for t > 0. Note that T(a)  = C~ 

for all a > 0. 

(ii) Another example of comparison function is given by a function g of the 

form 

(1.12) g(r)  = ( (p(r)  - c)r) V 0 
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where p be  a nonnegat ive  continuous function with p(0) = 0, and c > 0. Indeed,  

if we choose a0 > 0 so t ha t  p(r) <_ c for r �9 [0, a0] then  for each a �9 [0, a0) ,  we 

have T(a) = CO and m(t; a) = a for t >_ 0. 

T h r o u g h o u t  this pape r  we assume tha t  conditions (N) and (A) are satisfied. 

The  ma in  result  of this pape r  is given by 

MAIN THEOREM: Suppose that the following condition (G) is satisfied. 

(G) There  is a comparison function g with 7-(ao) = oo such that 

l imin f  ( ~ ( ( I  - hA(w) ) - 'w )  - ~(w)) /h  < g(~(w)) for w �9 Y. 
h$O 

Then for each uo �9 Y~o, there is a unique global classical solution u to (QE) 

satisfying the growth condition (1.11). 

We conclude this section by listing up some basic propert ies  of max imal  

solutions used later.  

For each c > 0 we write m~(t; a) for the non-extensible max ima l  solution of 

the initial value prob lem 

r'(t) = ge(r(t)) for t > O, and r(O) = a ,  

where g~ is defined by g~(r) = g(r) + c for r >_ 0. The  max imal  interval of 

existence of me(t; a) is denoted by [0, %(a)). 

PROPOSITION 1.2: The following assertions hold: 

(i) I ra  >_ ao and c >_ Co then T~(a) <_ T~o(aO) and mc(t;a) >_ m~o(t;ao ) for 
t �9 

(ii) As c $ Co and a $ ao, we have Te(a) $ Teo(aO) and me(t;a) $ meo(t;ao) 
uniformly on every compact subinterval of [0, T~ o (a0)).  

(iii) If  s �9 [0 ,%(a) )  then %(m~(s;a)) = re(a) - s and 

m a l t  + a )  = mal t ;  a ) )  for t [0, -- 

(iv) I f c  > c0 then for each a > O, me(t;a) > m~o(t;a ) for t  6 (O,T~(a)). 

Proof: The  e lementary  facts (i) th rough (iii) have been a l ready proved in [8]. 

To prove (iv), let a >_ 0 and c > r A continuously differentiable funct ion f on 

[0, Te(a)) defined by 

f ( t )  = me(t; a) - rnEo (t; a) 
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satisfies f ' (0)  = g(a) + e - (g(a) + eo) > 0. By the continuity of f '  there is a 

to e (0 ,%(a))  such that f ' (~) > 0 for ~ �9 [0,to]. Since f(0)  = 0 we have by 

the mean value theorem, f ( t )  > 0 for t �9 (0, to]; namely me(t; a) > m~ o (t; a)  for 

t E (0, t0]. For t E [to,%(a)),  we find by an easy computation 

m~e(t;a) > geo(me(t;a)) and ml~o(t;a) --g~o(m~o(t;a)). 

Since rn~(to;a) > meo(to;a), we have m~(t ;a)  > meo(t;a) for t e [t0,Te(a)), by 

[10, Theorem 1.2.1]. I 

2. Construction of "semi-implicit" discrete approximations 

The main result in this section is given by the following theorem which ensures 

the existence of "semi-implicit" discrete approximations of (QE). 

THEOREM 2.1 : Suppose that condition (G) holds. Let e > 0 and u0 E Y. Then 

there exists a sequence { ( ti, ui ) } i~=o in [0, oo) x Y such that it satisfies the following 

conditions: 

(i) O = t o  < t l  < " "  < t i  < " "  <Te(~(UO)); 
(ii) ti -- t i-1 <_ e for i = 1, 2 , . . .  ; 

(iii) (ui -- u i - z ) / ( t i  -- ti-1) = A(ui-1)ui  for i = 1, 2 , . . .  ; 

(iv) ~(ui) < me(ti; V(uo)) for i = 1, 2 , . . .  ; 

(v) limi-+oo ti = Te(~(u0)). 

We prove four lemmas needed for the proof of Theorem 2.1. 

LEMMA 2.2: Suppose that condition (G) holds. Then for each e > 0 and w E Y, 
A oo there is a null sequence { n}n=z of positive numbers such that 

~ ( ( I  -- AnA(w) ) - lw)  ~ me(An; eft(W)) 

for n >_ 1. 

Proof: Let e > 0 and w E Y. By condition (G) there is a null sequence {An}n~176 
of positive numbers such that  ~( ( I  - A,~A(w))-Zw) <_ (g(~o(w)) + e/2)A,~ + ~(w) 

for n > 1. Without loss of generality, it may be assumed that  A,~ E [0, 1] for all 

n :> 1. Now, let us define r,~(t) = (g(~o(w)) + ~/2)t + ~(w) for t e [0,)%]. We 

wish to prove 

(2.1) r ~ ( t ) < m e ( t ; ~ ( w ) )  for tE[O,  An]M[O, TE(~(w))). 
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To this end, we differentiate rn(t) and use the est imate 

[r~(t) - ~(w)l  < (g(~(w))  + ~ /2 )A.  

for t E [0, A,~]. This yields 

r~(t) <_ g(rn(t)) + p(g(~(w)) + r + ~(w); (g(~(w)) + e/2)An) + c/2 

for t C [0, An], where p(M;r)  = sup{Ig(t ) - g(s)l: 0 < t , s  < M, It - s I < r}. 
Clearly, limr~o p(M; r) = 0 for each M >_ 0; hence 

p(g((p(w)) + e/2  + ~p(w); (9((P(w)) + r <_ e/2 

for sufficiently large n. It follows tha t  

r~(t) <_ ge(rn(t)) for t �9 [0, An], and rn(0) = ~(w), 

which implies (2.1) by the comparison theorem. We have An < T~(~o(w)) for 

sufficiently large n, since T~(~O(W)) > 0. The desired claim is then proved by 
subst i tut ing t = An into (2.1). | 

LEMMA 2.3: Suppose that {A(w): w �9 Y }  is a family of  closed linear operators 
in Z satisfying the following condition: 

For each a >_ O, there exists ~(a) > 0 such that 

(2.2) A(w) �9 G(Z(~), 1, &(a)) for w �9 Y~. 

Let a > 0 and assume that a sequence {t~}~= o of nonnegative numbers and a 
W oo sequence { L}I=0 in Y~ satisfy the following conditions: 

(i) 0 = to < tx < t2 < . . . ;  
(ii) there exists L > 0 such that 

[Iwl - w l - lHx  <_ L(tt - tz-x) for l = 1 , 2 , . . . .  

I f  there exists ko >_ 0 such that (tl - tt-1)&(a) <_ 1/2 for l _> ko + 1, then 

] =~k+l(I-- t l - l )A(Wl ' l ) )  -1 (t~ -- _< M(a )exp(~ (a ) ( t i  - tk)) 
l Z , Z  
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for i > k and k > ko, where M ( a )  : M z ( a )  2 and/3(a)  = 2&(a) + L z ( a ) L .  

Proo~ Let z E Z and k > ko, and then set 

i 
ai = -~k+ (I  - hl .4(wz_l) ) - l  z 

l 1 (wl) 

for i > k ,  where h~ = tz - t l-1 for l = 1, 2 , . . . .  By (1.2) and (2.2) we have 

ai _< (1 - h i ~ ( a ) ) - I  (1 + Lz(~)[lwi - W i - l l l x ) a i - 1 ,  

and condit ion (ii) implies ai _< (1 - h i ~ ( a ) ) - l ( 1  + L z ( a ) L h i ) a i - 1  for i >_ k + 1. 

The  desired est imate  is obtained by i terating this inequalities, and using condit ion 

(1.1) and the est imate  (1 - t) -1 < e 2t for t E [0, 1/2]. | 

LEMMA 2.4: Let  a > 0 and T > O. I r a  sequence {(ti,ui)}i~=0 in [0, T) x Y~ 

satisfies two conditions 

(i) 0 : to < t l  < " -  < t~ < -. .  < ~- and limi~oo ti : "1-, 

(ii) (ui - u i - 1 ) / ( t i  - t i -1)  = A(u i -1 )u i  for i = 1, 2 , . . . ,  

then we have the following two assertions: 

(a) For each z C Z and sufficiently large k, the l imit  

i 

lira H ( I -  (tl - t l - 1 ) A ( u l - 1 ) ) - l z  i---+oo 
l-----k-bl 

exists in Z. 

(b) The  sequence {ui} converges in Y as i -+ ec. 

Proof." Since ui E Y~ for i > 0 the sequence {ui} is bounded in Y, by con- 

dit ion (~1). We apply (1.4) together  with this fact to the inequality obta ined 

by condit ion (ii) tha t  Ilui - u i - l l l x  <_ (ti - t i -1) l lA(ui-1) l ly ,  x l lu i l l y  for i > 1. 

This  yields tha t  assumption (ii) of Lemma 2.3 is satisfied with wt = ul and 

L = M A ( a )  sup{l lui l ly:  i > 0}. Since tz - t l - 1  -+ 0 as l -+ oc there  is an integer 

k0 > 0 such tha t  (tl - t l - 1 ) ~ ( a )  _< 1/2 for l > k0 + 1, where ~ ( a )  is defined as in 

Remark  1.1. To prove assertion (a), let k > ko. We have by Lemma 2.3 

H :kl~+ ( I - h l A ( ~ l _ l ) )  - 1  < M 
l 1 liZ, Z 
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for i _> k, where M = M(a)exp((2w(a)+Lz(a)L) 'r )  and hi = t l - t l - 1  for 1 > 1. 

A simple computation gives 

(2.3) 
i j 

H (I -- hiA(Ul_l))-ly - H (I - hlA(uz_l))-ly 
l=k+l l = k + l  

i p 

= E hpn(~tp-1) H ( I -h ln(~ t l -1 ) ) - lY  
p = j + l  / = k + l  

for y E Y and i > j > k. By (1.7), we apply Lemma 2.3 to the family 

{A(w) + B(w)} and use the relation (1.8). This yields 

i Y,Y l_Hk+l( I -- hzA(ul_l)) -1 <_ 

for i _> k, where M = Mz(a)2HS]]y, zl]S-1Hz,yexp((2~(a ) +Lz(a)L) 'r) .  By this 

fact the right-hand side of (2.3) is estimated by (t~- tj)MA(a)Mlly]ly. Assertion 

(a) follows readily from the Banach-Steinhaus theorem. 

We prove assertion (b). To do so, let k > k0. By condition (ii) and assumption 

(A2) we have (Sui - Sui-1)/hi  = (A(Ui_l) + B(ui-1))Sui; hence Sui = 
(I - h~A(u~_l))-l(SU~_l + h~B(U~_l)SU~) for i > k. It is proved inductively 

that  

(2.4) 
i 

Sui = H ( I -  hlA(ul_l))- lSuk 
l=k-F1 

+ ( I -  hpA(up_l)) -1 hzB(ut-1)Suz 
l = k + l  

for i > k. We use this identity to represent the difference between Sui and Suj,  
and estimate it in Z by using (1.6). This yields 

i 

IIS(u~ - uy)llz <~ l-Hk+l(I -- hlA(ut-1))- lSuk - 

+ ((ti - tk) + (tj -- tk))K 

r I  (I - htA(Ut_l))- lSuk 
/ = k + l  Z 

for i > j > k, where K = MMs(a)IISlly,  zSup{llu, llv: i >_ 0}. It follows by 

assertion (a) that  limsupi,j_~c r []S(ui - uj)[[z < 2(T -- t k )g ,  and the right-hand 

side tends to zero as k -+ cr This implies that assertion (b) is true. | 
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LEMMA 2.5: L e t  a ~_ O. I r a  sequence  {us} in Y~ converges to u in Y as i --4 co, 

then  there  is an ho > 0 such tha t  for A E (0, ho) and  every  sequence  {As} which  

converges  to A as i -4 co, we have  

lim ( I  - A i A ( u s _ l ) ) - l u s _ l  = ( I  - A A ( u ) ) - l u  in Y .  
i--~ r 

Proof:  We choose h0 > 0 so that i z ( a ) 2 ( 1  - h o w ( a ) ) - i h o M B ( a )  < 1 and 

hoW(a)  < 1. Now, let A E (0, h0) and {As} any sequence with l imi_~  As = A. 

There is an integer i0 _> 1 such that As E (0, h0) for all i _> i0, and then for each 

w E Ya,  ( I  - A sA(w) )  -1 E B ( Y )  exists by Remark 1.1. Let i > i0. If 91 is a 

closed linear operator in Z then the resolvent ( # I -  9.1) -1 is analytic with respect 

to # in the resolvent set. It follows from condition (A1) and (1.7) that  for each 

y E Y ,  ( I  - # A ( u ) ) - l y  and ( I  - # ( A ( u )  + B ( u ) ) ) - l S y  is continuous on (0, h0). 

These facts and (1.8) together imply that for each y E Y, 

(2.5) lim ( I  - A i A ( u ) ) - l y  = ( I  - A A ( u ) ) - l y  in Y. 
S--+oo 

It remains to show l i m / - ~  I ] ( I -  A i A ( u i - 1 ) ) - l u s - 1  - ( I  - A i A ( u ) ) - l u i l Y  = 0. By 

(A1) and (1.1) we have 

(2.6) I](I - A i A ( w ) ) - l l i z , z  < _ / z ( c ~ ) 2 ( 1  - A/w(a)) -1 

for w E Y~. Since 

( I  - A s A ( u s _ l ) ) - l y  - ( I  - A s A ( u ) ) - l y  

= As(I  - A s A ( u s - 1 ) ) - l ( A ( u s - 1 )  - A ( u ) ) ( I  - A s A ( u ) ) - l y ,  

we have 

H(I - A s A ( U i _ l ) ) - l y  - ( I  - A i A ( u ) ) - l y i l z  

< A s U z  (1 - - 1 L A  ( )II s-1 - ull z II ( I  - AsA(u))-iylly 

for y E Y, and the right-hand side tends to zero as i -+ co. It follows from the 

Banach-Steinhaus theorem that for each z E Z, 

lim 11(I - A s A ( u s _ l ) ) - l z  - ( I  - A s A ( u ) ) - l z i l z  = O. 
S--4oo 

Now, put vs = ( I -  A s A ( U i _ l ) ) - l u i _ l  and vs = ( I -  A i A ( u ) ) - l u .  

assumption (A2) to find 

We use 

(2.7) Sv i  = ( I  - A s A ( u i _ l ) ) - l ( S u i _ l  + A i B ( u s - 1 ) S v s )  
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and 

(2.8) S~;i = ( I  - A~A(u)) -1 (Su  + ;~iB(u)S~;i). 

Subt rac t ing  (2.8) f rom (2.7) and es t imat ing  the resul tant  equali ty by (1.6) and  

(2.6), we have 

IIS(vi - vi)llz -<ll(( I - AiA(ui-1))  -1 - ( I  - A i A ( u ) ) - l ) ( s u  q- A iB(u )Sv i ) l l z  

+ M z ( a ) 2 ( 1  - / ~ i o d ( o ~ ) ) - l { l l S ( U i _ l  - U) IIZ 

+ A, l l (B(u,-1)  - S (u ) )S~ i l l z  + A,Ms(c~)llS(vi  - ~i)llz}, 

and the  first t e r m  on the  r ight -hand side vanishes as i -~ oo, by (2.5) and what  

we have shown above. We set 5 = l i m s u p i _ . ~  IlS(vi - ~dlIz  and take the  limit 

as i --+ oo. This  yields 5 _< M z ( a ) 2 ( 1  - a~(~))-laM.(~)5. Here we have used 

(1.3). By the choice of ho we have 5 = 0; hence the sequence {vi} converges to 

( I  - A A ( u ) ) - l u  in Y as i -+ c~. 1 

Proo f  o f  Theorem 2.1: Let e > 0 and u0 E Y. Let  i_> 1, and assume tha t  a 
r [ t  u ~)i-1 sequence "lk l, lJJ'l=0 in [0,%(~o(u0))) X Y has been chosen so t ha t  (i) th rough  

(iv) m a y  hold for 0 < l < i - 1. We then  denote  by hi the  s u p r e m u m  of all 

h �9 [0, e] such t ha t  

{ t i-1 + h < Te(~(Uo)), 

~( ( I  -- h A ( u i _ l )  ) - l u i _ l )  <_ me(h; ~o(ui-1) ). 

By L e m m a  2.2 we have hi > 0. This  fact enables us to choose hi �9 (0, e] so t ha t  

h i /2  < hi, t i-1 + hi < Te(~,O(Uo)) and 

(2.9) ~o((I - h i A ( u i _ l ) ) - l u i _ l )  < m~(hi; ~o(ui-1)). 

Now, we put  ti = t i -1  + hi and ui = ( I  - h i A ( U i _ l ) ) - l u i _ l .  Clearly, condi t ion 

(i) t h rough  (iii) are satisfied. To show tha t  condit ion (iv) is t rue  in the case of i, 

we note  by (iii) of Propos i t ion  1.2 tha t  

"r~(rne(ti_l; ~(uo))  = Te(~(Uo)) -- t i-1 > hi, 

since t i -1 E,[O, Te(~O(uo)). Using the hypothesis  of induct ion t ha t  ~0(Ui_I) 
me( t i -1;  ~o(u0)), we have by (i) of Proposi t ion  1.2 

<__ 
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and the right-hand side is equal to me(hi  +t i -1 ;  ~(u0)) by (iii) of Proposition 1.2 

again. The claim that  condition (iv) holds follows by combining the fact above 

and the inequality (2.9). 

It remains to prove condition (v). For the purpose of an indirect proof, it is 

assumed that  t := lim~-~oo t~ < %(~(u0)). We then have 

:=  sup{me( t ;  t �9 [0, t-I} < co. 

Condition (iv) implies ui E Y~ for i > 1. It follows from Lemma 2.4 that the 

sequence {ui}  converges in Y as i -+ co. Now, put ~ = limi-~oo ui C Y .  By 

Lemma 2.5 there is an ho > 0 such that for )~ E (0, h0) and every sequence {hi} 

with limi-+oo hi = ~, lim~-~oo(I - A i A ( u i _ l ) ) - l u i _ l  = (I  - ~ A ( ~ ) ) - I ~  in Y. We 

choose h E (0, (c A h0)/2] such that 

{ t + h  < 7e(~(uo)), 

~(( I  - hA(~))- l~)  < me/2(h; ~(~)) .  

Here we have used Lemma 2.2. Set 7i = t + h - t i -1 for i _> 1. Since hi < 2hi = 

2(ti - t i -1 )  --+ 0 and 7i -+ h as i --+ co, there is an integer i0 _> 1 such that  

hi < "Y~ -< ~ for all i _> i0. Clearly, ti-1 + "yi < %(~(u0)) for all i > 1. By the 

definition of hi we have 

(2.10) ~p((I -- "TiA(ui_l))- lui_l)  > me(~,; ~o(ui-1)) 

for all i _> i0. Condition (iv) implies 

%(~(uk)) >_ %(me( tk ;  ~(Uo)) = Te(~(Uo)) -- tk > t +  h - tk > t j  - tk 

for j > k > 0, by Proposition 1.2. By (2.9) we have inductively ~(u j )  < 

me( t j  - tk;~a(uk)) for j >_ k > 0, which gives ~(~) <_ m e ( t  - t i -1 ;~ (u~-x ) )  

for i > i0; hence we have by Proposition 1.2, 

(2.11) me(h; ~p(~)) ~_ Tfte("{i; ~(ui -1))  

for i > i0. Combining (2.10) and (2.11), and taking the limit as i -+ co we find 

~( ( I  - hA(~))- l~)  >__ me(h; ~(~)) ,  

which is a contradiction to the choice of h, by (iv) of Proposition 1.2. It is 

concluded that  condition (v) holds. | 
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3. C o n v e r g e n c e  o f  a p p r o x i m a t e  s o l u t i o n s  a n d  p r o o f  o f  m a i n  t h e o r e m  

In this section we investigate the convergence of "semi-implicit" discrete 

approximate  solutions of (QE) and prove the main theorem. 

THEOREM 3.1: Let  uo E Y and T > O. Suppose that for each r > O, there exist 

"f U e l N~ in Y such f §  N~ of  nonnegative numbers and a sequence t i ~ i=o a sequence t~i Ji=o 
that  they  satisfy the following conditions: 

(i) 0 = t [ ~ < t ~  < . - - < t ~  < . . .  and T < t  ~ - N~ < T + G  

c < c  f o r i = l , 2 ,  .. N~; ( i i )  t ~ - t i _  1 _ . , 

(iii) (u~ - u~_ l ) / ( t  ~ - t~_l) : A(u~_I)U ~ for i - - - -  1 , 2 , . . .  , Nr where u~) = uo. 

I f  we define a simple function u ~ : [0, T] -~ Y by 

u ~ ( t ) = ~  uo f o r t = 0 ,  
[ u i for t E (ti_l,t~] M [0, T] and i = 1 , 2 , . . .  ,N~, 

then the following s ta tements  are equivalent: 

(a) sup{liu~(t)llY: t E [0, T]} is bounded ~ 0 .  

(b) There  is a classical solution u to (QE) on [0, T] such that  

(3.1) h~o(SUp{llu~(t) - u(t)]ly : t E [0,T]}) = 0. 

Proof" It is obvious tha t  (b) implies (a). We prove the implication "(a) ::~ (b)". 

If there exists u E C([0, T]: Y) satisfying (3.1), then we see tha t  u is a classical 

solution to (QE) on [0, T], by lett ing c $ 0 in the equality 

ue(t) - Uo = A(ue(t~_l))ue(r)  dr 
/=1  Jt~-i 

for t E (t~_l,t~] which follows readily from (iii). By this fact it suffices to prove 

tha t  there  exists u E C([0, T]: Y) satisfying (3.1). The  proof will be divided into 

a sequence of lemmas. Now, we assume (a), and so there exists an ~o > 0 such 

tha t  

ro -- sup{lluTIIy: 0 < i < WE and c E (0,~o1} < ~ .  

Condi t ion (~2) implies 

ao = sup{~o(u~) : 0 < i < Ne and E E (0,r < cr 
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Let ~(ao) be the nonnegative number defined as in Remark 1.1, and set A = 

{(t,s): 0 < s < t < T}. For each r �9 (0, Eo] with E~(ao) < 1/2, we introduce a 

family {U~(t, s): (t, s) �9 A} in B(Z)  defined by 

i 

Ue(t ,s )= H ( I - h ~ A ( u ~ - l ) ) - I  
l=p+l 

for s �9 (tp_l,tp] N [0, T] and t �9 (t~_l,t~] A [0, T]. Here and subsequently, t~_l is 

defined by t~_l = -cx~ for convenience, and we write for simplicity h~ = t~ - t~_ 1 

for 1 < / < N ~ .  

We start with the following lemma on the uniform boundedness of U~(t, s) in 

B(Z)  and B ( Y )  norm. 

LEMMA 3.2: For each ~ �9 (0,~o] with e~(ao) ~ 1/2 we have 

(i) [[U~(t, s)[[z,z ~_ M(ao)exp(3o(t~ - t~k)), 
(ii) [lUg(t, s)l[y,y < M(ao)exp(3o(t ~ - t~)) 

for t �9 (t~_l, t~] N [0, T] and s �9 (t~_l, t~] A [0, T], where 

-M(~o) -- IISlIY, zIIS -~ IIz,v M(~o) ,  

~o = 2w(ao) + Lz(ao)MA(ao)ro, and 3o = 2~(ao) + Lz(ao)MA(ao)ro. 

Proof: Let e �9 (0, Co] be such that s~(ao) _< 1/2 which implies (t~-t~_l)~(ao) <_ 
1/2 for i -- 1, 2 , . . .  , N~. By condition (iii) of Theorem 3.1 we have 

(3.2) [lu~ - u~-l l lx  < (t~ - t~_l)[IA(u~_~)llY, xllu~llY < MA(ao)ro(t~ - t~_l)  

for i = 1, 2 , . . .  , N~. Assertion (i) is a direct consequence of Lemma 2.3. By (1.7) 

we apply Lemma 2.3 again to the family {A(w) + B(w)} and use the relation 
(1.8). This proves that assertion (ii) is true. | 

Let A,# �9 (0,~0] be such that (A V #)~(ao) < 1/2 and y �9 Y. For 0 _<p ~ N~ 

and 0 _~ q < N#, we shall estimate the norm in Z of the difference between 

i 

(3.3) z ~ =  1~ (I-h~A(UXl-1))-lY f o r i = p , p + l , . . .  ,N~, 
/ = p + l  

and 

J 
(3.4) s = H ( I -  h~A(U~_l))-ly 

/ = q + l  

for j ---- q, q + l, . . . , Nt,. 
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It is convenient to employ the following notations: 

a~) ~ = IIz/~ - z~[l(~)) V Ilz~ - z~ll(~) for p < i < N:~ and q _< j _< N .  

and 

235 

(3.5) 

LEMMA 3.3: (i) The inequality 

1 -  h)hy  w~a~'~  
+ hy ] 

tt A,~ h~ h/X , (1 + Lhj  )ai,j_ 1 (1 + n h ) ) ~ ' ~  j + 

tt 

h i hj {K(I]Y[IY)(A + #) + M(l[Yl[g)(b~,~, j + b~?_l) } + 

holds for p + 1 < i < Na and q + 1 < j <_ Nt, , where 

a~ = a~((~o), L = (Lz(~o)MA(aO) V Mz(c~o)2LA(e~))ro, 

K(llylIy) = Mz(c~o)nA(c~o)MA(ao)roC([ly[[y), and 

M([[y[[y) = Mz(ao)2nA(ao)C(l[y][y).  

(ii) a ~  _< I(t)-t))- ( t 2 - t ~ ) [ N ( [ [ y I [ y  ) for i = p or j ----q, where N(Ily l lY)  = 

MZ(c~o)M A (C~o)C(Ilylly ). 

Proo~ Let p + 1 < i < N;~ and q + 1 _< j _< N. .  Prom the definition of z~ and 
~?~ it follows readily that 

(z~ - z L 1 ) / h )  = A ( u L x ) Z )  = A ( u ) ) z )  + (A(uL1)  - A ( u ) ) ) z )  

and 

(2~t ^, , " ^ "=A(@)2J t  (A(u~_l) A(@))2~.  - Zj_x) /h  j = A ( u j _ l ) z  j + - 

-%] l (~ )v l lu )  " = -ujll(~,2) f o r 0 < i < N a  and0<__j_<N. .  

By (ii) of Lemma 3.2 there exists C(IlYllY) > 0 such that 

sup{]]z~lly : p < i < N~} v sup{ I ]~ l ]g  : q <_ j <_ N . }  < C(][y]Iy) 

for 0 <_ p <_ N~ and 0 _< q <_ N. .  The following fundamental inequalities will be 

used for the comparison between z/~ and :?Jr by induction on ( i , j ) .  
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Using the assumption that A(u~i) E G(Z(u~),  1, w) we find 

(3.6) ([Iz~ - ~ 1 1 ( ~ )  - IIz~-i - ~ l l ( ~ ) ) / h ~  

+ (llz~ - ~ 1 1 ( ~ )  - I I z ~  - 2~- l l l (~ ,~)) /hy 

_< ~'llz~ A~, 

+ I[(A(Uy_l)-A(u~))'~ll(~). 

By (1.2) and (3.2) we have 

IIz{-1 - z~ll(~) -< IIz{-1 - ~11(~_1)(1 + Lz(ao)MA(C~o)roh{)  

< + Lh ). 

We find by (3.2) again 

I](A(U~_l) - A(u~))z{ l l (~{  ) <<_ M z ( a o ) l [ ( A ( u { _ l )  - A(u~i ))z{[Iz  

<_ Mz(c~o)LA(O~o)]]u~i_l ~ - ~ Ilzllz, IIy -< g(I ly l ly )A.  

Similarly we see that the last term on the right-hand side of (3.6) is bounded by 

M(lIYlly)b~,~_l. Manipulating these inequalities we have 

h i h j  
y _i__E~ w ^u (3.7) 1 hi + hj ) IIz~ - zj I1(~) 

h/~ .)~,tL 
+ hy - - ' h i + hj 

A 
h i hj  (K(l lYlIY)A + M ( l l y ] l y ) b ~ _ l ) "  + 

The desired inequality (i) is obtained by applying this argument with (p, i, A) and 
(q, j, #) interchanged, and combining the resultant inequality and (3.7). 

We now turn to the proof of (ii). Since z/~ - z{_x = h~A(u~_~)z{  we have 

Ilzi ~ - Z{_lllZ <_ h{MA(ao )C( l [ y l l y  ) for p +  1 < i < N~. By (1.1) we have 

a~'~ ~ <_ Mz(c~o)[Iz~ - y l lz  <- Mz(ao) l l z~  - z~llz  

for p < i < N~.  It follows that  a~'~" < (t~ - t~)N(ll~llY) for p < i < N~.  

~'"~ < (ty - t~)N(l l~l lg)  for q < j < N .  . Similarly, we have ap,~ _ _ _ 

The following two lemmas are needed to show that the limit lime$0 u ~ (t) exists 

in the "good" subspace Y of Z, uniformly on [0, T]. 
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LEMMA 3.4: For 0 < s < t < T we have 

= u . ( t ,  

• + U~(t, tL1)B(u~(tf_l))Su~(r) dr, 
/ = k + l  -1  

where i and k are nonnegative integers such that t E (t~_l,t~] and s E (tk_l,tk]. 

Lemma 3.4 is readily proved by taking account of (2.4). II 

LEMMA 3.5: For each z E Z we have 

(i) The limit U(t, s)z := lime~0 UE(t, s)z exists in Z uniformly on A; 
(ii) the function (t, s) --+ U(t, s)z is continuous in Z on A; 

(iii) U(t, t)z = z, and U(t, s)z = U(t, r)U(r, s)z for (t, r), (r, s) E A. 

Proof." By (i) of Lemma 3.2, it suffices to prove the lemma for all y E Y. For 

this purpose, let A, tt E (0, co] be such that (,~Vtt)~(ao) < 1/2 and y E Y. Let us 

define z~ and ~ by (3.3) and (3.4) respectively, and then the inequalities (i) and 

(ii) of Lemma 3.3 hold. We begin by showing the estimate on b~) ~. For simplicity 
in notation we write 

i j 

7~j~ = I I ( 1 -  wh~)(1 + 2Lh~) -1 .  l-I(1 - wh~)(1 + 2Lh~) -1 
k = l  k = l  

for 0 < i < N;~ a n d 0  <_ j _< N~,. It should be noted here that  z/~ = u~ and 

~ = uj" i f p  = q = 0 and y = uo. Se t t ingp  = q = 0 and y = uo in the 

inequalities (i) and (ii) of Lemma 3.3, and multiplying the resultant inequalities 

on only b~) ~, that is, the inequalities with C(llyllg) replaced by r0, we find 

b~'~ <_ NIt)  - tyl f o r i = 0 o r j = 0  

and 

t t ;~ . k t t  
_ ~ , . ~ x , t ,  < h j  .;~,t, z.~,t, h i  _ x,t, b:~,t, h i hj 
ri,j oi,j - hiX + hj"ri-l 'Jui-l 'J  + hiX + hjt"ri'J-1 i,j--1 hI- hi~ + h2K()~ + t t) 

for 1 < i < N~ and 1 < j < Nt, , where N = Mz(ao)MA(ao)ro and K = 

Mz(ao)La(ao)MA(ao)r  2. On the other hand, we deduce from Schwarz's 
Atz inequality that  a sequence {fli,~ } of nonnegative numbers defined by 

~,  = N((t~ - t~l + )~txi + #ty) 1/2 + K(~t~ + #ty) 
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for 0 < i < N~ and 0 < j <_ N .  satisfies the inequality 

(3.S) - -  - - t ~ i  j - -1  -1- - - K ( A  + #) 

for 1 < i < Nx and I _< j _< N~. One verifies inductively 

(3.9) "~'"~'" < ~3~3t' "[i,j u i , j  --  

for 0 < i < Na and 0 _< j < Nt,. (See also Kobayashi [71. ) 
We now turn to the estimate on a~) ~. It is necessary for us to rewrite (3.5). 

To do so, we use for simplicity the notation 

j 

w~? = l-I  ( 1 - w h ~ ) ( 1  + Lh~)  - 1 .  [ I  ( 1 - w h ~ ) ( 1  + Lh~)  -~ 
k m p + l  k = q + l  

for p < i < Nx and q _< j _< n . .  Multiplying (3.5) by ~i,j'~'"̂ ~i,3 x'" we find 

h t t  

~ i , j  OJi,j a i , j  < )~ tt J i - l , j  i - 1  j c e i - l , j  -]- 
- h i + h3 h i + hj  ' )~ t~ 

x t* 
hi h h y  K ( l l y l l g ) ( ~  + tL) 

+ h ~ +  . 

.A,tt .A,tt _ ~k,tt 
tt " Yi,j-- l ~ i , j - -  l C~i,j--1 

h~h ~ . �9 
+ ~ t~ ( I l Y i l Y ) V Y i - 1  j i - 1  j -~ l i , j - l " i , j - l ]  

h i + hj  ' ' 

f o r p + l  < i ~ N~ and q + l  < j < N~. Using (3.8) and (3.9) we have by 

induction on (i, j) ,  

~,~ ~ , , j  ~ ,~  < N ( I I Y l I Y ) { ( ( t ~  - t~)  - ( ty  - t~) )  2 + ~( t~  - t~)  + / ~ ( t y  - t~)} 1/2 

+ K(HylIY)(A(t~ ~ " - tp)  + ~(t~ - t~))  

+ M ( I t y l l Y ) ~ j : ( ( #  - t~) + ( ty  - t~))  

for p < i < N~ and q _< j _< Nt,. Assertions (i) and (ii) are then proved by 

standard arguments. Assertion (iii) follows readily from the relation Ue(t, s) = 

U e ( t , r ) U ~ ( r , s ) f o r  ( t , r ) , ( r , s )  E A .  | 

The proof of the implication "(a) =~ (b)" is finally complete by the following 

lemma. 
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LEMMA 3.6: 

Proof'. 

(3.10) 

QUASI-LINEAR EQUATIONS 

There exists u 6 C([0,T]: Y)  satisfying (3.1). 

We begin by showing tha t  

~mo(SUp{llu~(t) - u(t)lly: t �9 [0, r]}) = 0, 

239 

if there exists u E C([0, r]: Y) such tha t  

/o (3.11) Su(t) = U(t, O)Suo + U(t, r)B(u(r))Su(r)  dr 

for t E [0, T], where r e (0, T]. To this end, let t E [0, r]. Then there is an integer 

i > 0 such tha t  t 6 (ti_l,t~]. By Lemma 3.4 we have 

(3.12) Su~(t)  = U~(t,O)Suo + g~( t , t~_ l )B(u~( t~_l ) )Su~(r )  dr. 
/ = 1  Jtf-1 

By (i) of Lemma 3.5, we have lims,o U~(t, O)Suo = g( t ,  0)Suo uniformly on [0, T]. 

We est imate  B(ue(tf_l))Su~(r) - B(u(r))Su(r)  by dividing it into three terms 

(B(u~(t~_l)) - B(u(t~_l)))Su~(r), B(u(t~_l))(Su~(r) - Su(r)),  and 

( B ( u ( t L i ) )  - B(u(~)))S~(r), 

and then  using (1.3) and (1.6). This yields 

]1 B (  ue (t~_ 1 )) sll"e (r)  - B ( u ( T ) ) S u ( r ) I !  z 

<_ LB(aO V ~l)r zro + MB(~l)lISlly, zr 

+ Ls(~l)p(e)]lSHY, z r l  

t e t e for r e ( 1-1, l l, where 

r ~  = sup{llu(t)lly: t e [0, r]} and c~1 = sup{~(w): Ilwlly _< rl}. 

Here two functions r and p are defined by 

Ce(t) = sup{llue(r]) - u(Tl)llg : r / � 9  [0, t]} 

and 

p(t) = sup{llu(s ) - u(~)lly: Is - sl -< t}, 
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respectively. Subtracting (3.11) from (3.12) we find 

f HuG(t) - u(t)llY _< ),~ + Ko CE(r) dr 

for t �9 [0,T], where Ko is a positive constant and {,k~} is a null sequence of 

positive numbers. We now set r = lim sup~$o Ce(t) for t �9 [0, 7]. By Lebesgue's 

convergence theorem we have r < K0 f t  r  for t �9 [0, ~-]. Application of 

Gronwall's inequality gives 4~ = 0 on [0, ~-], which proves the desired claim (3.10). 

Now, we define ~ by the supremum ~- �9 [0, T] such that there exists u �9 

C([0, T]: Y) satisfying (3.10). We shall show that there exists u E C([0,~]: Y) 

such that  (3.11) holds with T replaced by Y. If ~ = 0 then this fact is true. We 

may assume 0 < ~ < T. By the definition of ~ there exists u �9 C([0,~) : Y) such 

that  limes0 ue(t) = u(t) in Y, uniformly on every compact subinterval of [0, ~). 

Clearly, I]u(t)[iy _< ro and qo(u(t)) <_ ao for t E [0,~). We have by Lemma 3.4, 

// s~(t)  = u(t ,  s)Su(~) + U(t,r)B(~(r))S~(T) dr 

for 0 < s < t < ~. Let 0 < s < Y and s _< t , t  < Y. We find by the equality above 

ltS(u(t) - u(t3)IIz < ItU(t,s)Su(s) - U(t,~)S~(~)llz + ((t - s) + ( ~ -  s))C, 
J 

where C -- U(ao)exp(floT)MB(ao)iiSiiY, zro. By (ii) of Lemma 3.5 we see that 

the first term on the right-hand side vanishes as t, t ~" ~. As t, [ ~" ~, the last term 

converges to 2C(Y - s), which tends to zero as s ~" ~. This proves that the limit 

lim,r u(t) exists in Y, and so the desired claim is obtained. 

We have only to show ~ = T by the fact which was proved in the first part. 

Assume to the contrary that  ~ < T. By what we have just proved, there exists 

~z E C([0, ~]: Y) satisfying the intergal equation 

I' (3.13) s~(t)  = u( t ,o)s~o + U(t ,r)B(u(r))S~(r)  dr 

for t E [0, ~]. By a fixed point argument one finds a ~ > 0 so that  the integral 

equation 

f (3.14) Sv(t) = U(t,e)Su(e) + U(t,r)B(v(r))Sv(r) dr 

has a unique solution v E C([~,~ + ~]: Y). (See also [9, Lemmas 3.5 and 3.6].) 

Substituting (3.13) with t = ~ into (3.14) and using (iii) of Lemma 3.5 we have 

[ Sv(t) U(t, O)Suo + __ U(t, r)B(u(r))Su(r) dr + U(t, r)B(v(r))Sv(r)  dr 
do 
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for t E [~, Y+(~]. It follows tha t  u can be extended to an element of C([0 ,~+6]  : Y) 

which satisfies (3.11) with 7 = ~ + 6 ,  by defining u(t) = v(t) for t E [~ ,~+6] .  By 

the first par t  of the proof  we see tha t  u satisfies (3.10) with T ---- Y + 6, which is 

a contradict ion to the definition of ~. I 

Proof of main theorem: Let u0 E Yao and T > 0. Since lime+0 %(qO(Uo)) = 

T(~(Uo)) = oo, there  is an G0 E (0, 1] so tha t  T + I  < %(~(Uo)) for c E (0,~0]. By 

Theorem 2.1, for each c E (0,~0] there exist a sequence f t  elN~ of nonnegat ive t i S i :o  

numbers  and a sequence lue)N~ in Y such tha t  they satisfy conditions (i) th rough t i S i :0  

(iii) of Theorem 3.1 and 

(3.15) _< 

for i = 1 , 2 , . . .  ,Ne. Since me(t;9(uo)) $ m(t;~(Uo)) uniformly on [0, T + 1] as 

e $ 0 (by (ii) of Proposi t ion 1.2), we have 

so = sup{me(t;qo(uo)): r E (0,~0] and t E [0, T +  1]} < oo. 

It follows tha t  qv(u~) <_ a0 for i = 1, 2 , . . . ,  Ne and c E (0,r Condit ion (T1) 

implies tha t  s ta tement  (a) of Theorem 3.1 is true. From Theorem 3.1 we deduce 

tha t  the (QE) has a classical solution u on [0, T] satisfying (3.1). By  (3.15) we 

have ~(u(t)) < rn(t;~o(uo)) for t E [0,T]. Since T > 0 is arbitrary,  the desired 

claim follows from s tandard  arguments  together  with Theorem 1.1. I 

4. Applications to hyperbolic equations 

In this section we shall apply our abstract  theory to Cauchy problems of three 

nonlinear hyperbolic  equations. 

Let  us first consider the hyperbolic equat ion 

(4.1) u"(t) + A u(t) + y(IA1/2u(t)12)Au(t) = o for t > 0 

in a real Hilbert  space 7-/with the inner product  (., .) and the associated norm 

]. ]. Here ,4 is a positive selfadjoint operator  in 7-/, and so there  is a c > 0 such 

tha t  (Au, u) > clul 2 for u E D(A). It is assumed tha t /3  E C2([0,oo):  R) satisfies 

/3(0) = 0 and/3~(r) > m0 > 0 for r > 0. This is the abstract  version of damped  

extensible beam equations (see Patcheu [13]). 

By  ]2 and }4) we denote  real Hilbert  spaces D(A) and D ( A  2) equipped with the 

inner produc ts  (u, ~2)v = (Au, A~2 / for u, fi E V, and (u, fi)w = (,A2u, ,42~) for 
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u, fi E l/V, respectively. We shall prove that for each (r 9o) E 147 x V, problem 
(4.1) has a unique solution u in the class 

62([0, OO): • )  n cl([0,  oo): V) N C([0, 0o): 9t~) 

satisfying the initial condition (u(0), u'(0)) = (r r To this end, let (r r E 

147 • )2 and set Eo -- Ir + 1,4r 2 +/3(1`41/2r We first note that a func- 

tion u defined on [0, c~) is a solution of (4.1) satisfying the initial condition 

(u(0), u'(0)) = (r ~bo) if and only if it is a solution of 

(4.2) u"(t) + `42u(t) + g'([`41/2u(t)12)`4u(t) = 0 for t > 0 

with the initial condition (u(0), u'(O)) = (r ~b0), where g is defined by 

g(r) = /3'(s A (Eo/mo)) ds 

for r > 0. Indeed, if u is a solution of (4.2) on [0, oc) then 

d( ) 
d-~ I~'(t)12 § 1`4u(t)12 § ~(1`41/2~(t)1~) = 0 for t ~ 0 

which follows easily by taking the inner product (4.2) with 2u~(t). By the 
assumption of/3 we have 1`41/2r 2 <__ Eo/mo and ~(r) > rnor for r _> 0; hence 

mol`41/2u(t)] 2 <_ ]r 2 + 1`4r ~ + ~(1`41/~r ~) = E0 

for t >__ 0, by which we see that u is a solution of (4.1) on [0, cx)). The converse is 

proved in the same way. 
Now, we shall study the Cauchy problem for (4.2). For this purpose, we convert 

the differential equation (4.2) into the first order system 

(d/dt)(u(t),v(t)) = (A(u(t),v(t)))(u(t),v(t)) for t >_ 0 

in the Hilbert space Z (= X) = Y • 7-/, where {A(w, z): (w, z) E Y} is a family 

of linear operators in Z defined by 

( A(w, z))(~,  v) = (v, - `4% - ~' (l`41/2w12)`4u) 

for (u, v) ~ D(A(w,  z) ) = Y := W • 12. By the positivity of A we have clu I < IAu 1 
for u e D(A); hence tA1/~uf 2 <_ {Au, u} < tAu]2/c for u E D(A),  and c21u] <_ 



Vol. 110, 1999 QUASI-LINEAR EQUATIONS 243 

c]Au I <__ IA2uI for u E D(A2), by which we see that Y is continuously imbedded 
in X, and find two inequalities 

(4.3) I~l ~ < ~/c 4, 
(4.4) IA1/2wl 2 <_ a/c  a 

for (w, z) E Y~. Let us define a functional p on Y by 

~(~,~) = I~1~ + I~i~ ( -  li(~,v)ll~) 

for (u, v) E Y. Clearly, ~ is continuous on Y and satisfies conditions (~,1) and 
(~2). We introduce a family {(.,.)(~,~): (w,z) E Y} of inner products in Z 
defined by 

for (u, v), (~, ~) E Z. Condition (N1) is easily checked by (4.4). To prove (N2) 

let (u, v) E Z with (u, v) r (0, 0), and (w, z), (@, ~) E Y~. Then we have 

I I ( ~ , v ) l l ( ~ , ~ )  II (u, ~) l l~,z)  - II (~, v)I1~,~) 
(li(~, v)li(w,~) + ll(~, v)ll(~,.~))li(u, v)il(,~,~) 

< ~'(IA~/~I~) _ ~,(IA1/~12 ) 
- 2 m 0  

By (4.3) and (4.4) we have 

+ 1 .  

+ 1  

I~'(IA1/2wl 2)-~'(IA1/u~12)l 

(4.5) < L~,(I.A1/2wl2 v IA1/~wl:)l/.a(w - ~),w + ~)1 

<- 2~/:L~,  (~/c 3) I1~ - ~11 v /c  2, 

where L~,(T) denotes the Lipschitz constant of ~' on [0, T]. It follows that 
condition (N2) is satisfied. 

To prove condition (A1), let (w, z) E Y. A straightforward computation yields 

((u, v), (A(w, z))(u, v)}(~,z) = 0 for (u, v) E Y. To prove the range condition, let 

(f, g) E 12 x 7 / a n d  A > 0. A bounded bilinear form a[w;., .] : Y x )2 ~ ]R defined 
by 

a[w; u, ~] = {u, ~} + A2 {Au, A~} + ),2~'(IA1/2wl2)(A1/2u, A1/2~) 
satisfies the estimate a[w; u, u] >__ A2iu]~ which means that a[w;., .] is coercive 

on Y • V. A functional F on Y defined by F(~) = {f, ~} + A{g, ~) is linear and 
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bounded. By Lax-Milgram's theorem there exists u C ~ such that  a[w; u, ~] = 

F(fi) for all fi E V; namely 

(U, U} ~- ~2 (~tU, .4~) ~- )~2~/([.AI/2w[2)(.AI/2~, .41/27~) : (f, ?~} _[_ ~(g, ?~) 

for all ~ E V. Put v -- (u - f ) / A  E ~2. By the equality above we find 

( .4u, .4~) = { (g - v)/A - ~' (I.41/2w12)Au, ~) 

for ~ E V, which implies 

.4u E D(.4*) = 0 ( . 4 )  and .42u = (g - v ) /A  - ~'(I.41/2w12).4u. 

It follows that  R ( I  - A A ( w , z ) )  = Z for all A > 0. It has been proved that 

condition (A1) holds with w(a) = 0. Condition (A2) is satisfied with B ( w ,  z) = 0 

by choosing the isomorphism 

of Y onto Z. By (4.5) we obtain the desired inequality (1.5), which implies the 

fact that  A(.) E C ( Y ;  B(Y ,  X ) )  and (1.4), since X = Z in this problem. 

We shall check condition (G). To this end, let (Uo,Vo) e ]/Y x Y and set 

(4.6) (ux, v~) = (I - AA(uo, Vo))-i (uo, Vo). 

By Remark 1.1 there exists Ao > 0 such that (ux, vx) E ~/Y x )2 for A E (0, Ao] 

and (ux, vx) --+ (uo, Vo) in )4; x ]) as A $ 0. (4.6) is written as 

(4 .7 )  (~x  - u o ) / ~  = v~ ,  

(4.8) (vx - Vo)/A + A2u), + ~'([.41/2uo12)Aux = O. 

By (4.7) we have vx e 142; hence A2v~ makes sense. Taking the inner product of 

(4.8) with .42v~ we have by (4.7), 

(.Av),, .4v), - ,Avo) /A + (.42u), - A2uo, A2ux)  /A + ~'(IA1/2uol)(Av)~, A2uA) --- O. 

By the inequality 

(4.9) ( lul  2 - I v l 2 ) / 2  < <u, u - v> 
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for u, v �9 7-/, we have 

(I.Av~, I ~ - I.Avo I~)/A § (I.A~u;, I ~ - I .A~o I~)/A ~ 2/~'(]A1/2u0 I~)l.Av~,l I.A2~, I. 

An application of Young's inequality gives 

(~(~ ,  v~) - ~(~o, vo))/~ < a~(~ ,  v~), 

where a = sup{~'(r) :  r > 0} < c~. This implies that condition (G) is satisfied 

with a comparison function g defined by g(r) = ar for r >_ 0, since (u~, v~) --+ 

(u0, v0) in 141 • 1) as A $ 0. 

We next consider the quasi-linear wave equation of Kirchhoff type 

(4.10) u"(t) + D'(IA1/2u(t)12)Au(t) + vu'(t) = 0 for t ~ 0 

in a real Hilbert space 7-I with the inner product (., .) and the associated norm 

I" I. It is assumed that .4 is a nonnegative selfadjoint operator in 7-/, v > 0 and 

that  ~ E C2([0, oc): 1~) satisfies/3(0) = 0 and 13'(r) _> m0 > 0 for r > 0. This 

problem has been intensively investigated. (For example, see Heard [3] and Ono 

[12].) 

We apply the main theorem to prove the existence and uniqueness of a global 

solution u of (4.10) in the class 

C([0, oo): W) i"l C1 ([0, oo): "~) n 62([0, oo): ~-~), 

where 1/Y and l) are two real Hilbert spaces D(A) and D(A U2) equipped with 

inner products (u, ~z)w = (u, ~) + (Au, A~) for u, ~ �9 PV, and (u, fi)v -- (u, ~) + 
(A1/2u, A1/2~) for u, ~2 �9 V, respectively. 

Now, we take Z = X = ]2 x 7-/ and Y = )zV x V. Clearly, Y is continuously 

imbedded in X, since IA'/2u[ 2 = (Au, u) <_ [u]~v/2 for u �9 D(A).  (4.10) is 

converted into the first order system in Z 

(d/dt)(u(t),v(t)) = (A(u(t),v(t)))(u(t),v(t)) for t _> 0. 

Here {A(w, z): (w, z) E Y} is a family of linear operators in Z defined by 

( A(w, z) )(u, v) = (v, - ~ '  (IA1/2wI2)Au - vv) 

for (u, v) �9 D(A(w,  z)) :---- Y.  Let us consider a functional ~ on Y by 

qa(u, v) = (Ivu + v] 2 + lv] 2 + 2~(IA1/2ut 2) + ]AU2(vu + v)] 2 +,8' (IA1/2uI2)IAu]2) /2 
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for (u, v) E Y. Clearly, ~o is continuous on Y. By the assumption of/7 we have 

mor <_/3(r) <_ M#, (r)r for r _> 0, where M#, (r) = sup{/3'(s) : s E [0, r]} for r _> 0. 

It follows that  

(1 A mo)il(u,v)ll2/2 <_ qo(u,v) < (1 V M#,(IA1/2u[2))l[(u,v)ll2/2 

for (u,v) �9 Y.  Here [](u,v)[ I is a norm in Y defined by 

I I (u,v) l l  = (l~,u + vl ~ + Ivl 2 + 21.s 2 + I A l / 2 ( v u  + v)l  2 + IAul~) 112, 

which is equivalent to the norm I1(~, ~)IIY; hence there are C .  >_ ~. > 0 such tha t  

c.ll(u,v)ll~ ___ ~(u,v)< C~(1 V Mn,(IAll2ul2))ll(u,v)ll~ 

for (u, v) �9 g .  This means that ~ satisfies conditions (~1) and (~2). We intro- 

duce a family {11" II(~,z): (w,z) �9 Y }  of norms in z defined by II(u,v)ll(~,z) = 
<(u,v)," ,,1/2 tu, v))(~,~) where 

<(u, v), (~, ~ ) ) ( w , z )  = #'(IAIi2wl2)<A 112u, A 112~) + (u, (~) + <v, r 

for (u, v), (~, ~3) �9 Z. By an argument similar to that in the first example, it is 

shown that  the family {1[" l[(w,z) : (w, z) e Y} satisfies condition (N) and that  the 

family {A(w, z): (w, z) �9 Y} satisfies condition (A) by taking 

S=((S+A)I/~ 0 ) 
0 (1 + A) ~12 

as an isomorphism of Y onto Z. Here we note that  the range condition is checked 

by considering a bilinear form a[w;., .] on ~ x 12 defined by 

a[w;u,~] = (1 + Au)(u,~) + A2fl'(IAll2wI2)(A~I~u, All2~) 

and a linear functional F on V defined by F(~) = (1 + Av)(f ,~) + A(g,~). 
It remains to check condition (G). To do so, let (uo, vo) �9 Y and define (u~, v~) 

by (4.6). By Remark 1.1, there exists Ao > 0 such that (u~, vx) �9 Y for A �9 (0, Ao] 

and (u;~, vx) -+ (uo, vo) in Y as A $ 0. (4.6) is written as 

(4.11) u,x - uo = Av,x, 

(4.12) v), - v 0 -}- A]~'(lA1/2uol2).Aux -t- AI]vA = O. 
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Taking the inner product of (4.12) with v~ we have, by (4.11), 

(4.13) (v~,, v~, - vo) -t- ~ '  (].A1/2uo]2)(Au)~, u)~ - uo) -t- ..~p]vAI 2 : O. 

We take inner products of (4.11) and (4.12) with u2u~ and uu~ respectively, and 

sum up the resultant equalities. This yields 

u2 (u~, - Uo, u;~) + u(v;~ - vo, u;~) + Aut3' (]A1/2uol2)lA1/2u;~l 2 = O. 

Addition of this and (4.13) gives 

(uuA + v.x, u(uA - uo) + (vA - vo)) -I- Z'(IA1/2uo[2)(Au)~,  uA - uo) ~_ O. 

By this inequality and (4.13) we have 

([euu;, + v;~l 2 - [euuo + vo]2)/2 + Z'([A1/2uoL2)([A1/2u~,[ 2 - IA1/2uo12)/2 <_ 0 

for each e -- 0, 1. Note that if a E C1([0, co): ]~) then 

o-( IA1/2u,x l  2) - o-(i.A:/~o12 ) 
(4.14) 

= (fol  '(61A1/2  12 + ( 1 -  e)lAt/2 o12) de) - + uo), v l. 

Making use of (4.14) with a =/~ we have 

( l ~ u ~  + v~l 2 - I ~ o  + ~ol2)/2~ + ( # ( I A ~ / ~ I 2 )  - # (IA1/~ol2) ) /2~  

l ( j~o l  ) (4.15) + ~ {/~'(IA1/2uol 2) - l~'(OIA1/2u;~l 2 + (1 - 0)1,41/2uol2)} d0 

• (A(u~ + uo), v~) _< 0 

for each e = 0, 1. By (4.11) we have v~ = (u~ - uo)/A e D(A); hence Avx makes 
sense. We take inner products of (4.12) with .Av~ and u.Au;~ respectively and 

then use (4.11). This yields two equalities 

f l ' (1A1/2uol2){Au~, ,  A(u~, - uo)} 

-I- (A1/2vA, A1/2(v.x - vo) + u.A1/2(uA - Uo)) = 0 

and 

( u A 1 / 2 u ~ ,  A1/2(v~, - vo) + vA1/2(u~,  - uo))  + Avt~ ' ( IA1/euol~) lAu~l  ~ = O. 
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Adding these equalities we find 

(Iv, A1/2u~ + A1/2v~,] 2 - IvA1/2uo + AU2voi2)I2A 

+ g'( iA1/2uol2)(IAu~,l  2 - IAuoi2)12A + ~,g'(IA1/2uol2)iAuxl 2 <_ O. 

We write the second term on the left-hand side as 

(g,( I .Al l2uxl~) lA~, l  ~ - g'(I..41/2uol~)tA~o12)t2~ 
- (~'(I.Al/2uxl ~) -/:7'(l..41/2uol~))l.Au~,12/7~ 

and use (4.14) with a = g'. This yields 

( I A ~ t ~ ( . ~  + ~ ) 1  ~ - 1~41z~(.uo + ~o)I~) /2~  

+ (S~'(IAlZ2u~i2)lAu~l ~ - Z'(IAlZ%ol~)lAu012)/2~ 

1 
k 

- - o ) 1 . s  2 )  dO) (4.16) + {g'(IAll2uol2). -~ (Llg"(oIAll2u~,l ~ + (1 
/ 

x <.A(,.,~, +,-,o),~x)}l.A~,~g <_ 0. 

Adding (4.15) with e = 0, 1 and (4.16), and taking the liminf as A $ 0 we find 

lim inf (~o(u~, v~) - ~o(uo, vo) ) lA  
;t$o 

+ (g'(IAll2uol2)~, - g " ( lA l l2uo l2 ) (Auo ,  vo)) lAuo? < o. 

This means that condition (G) is satisfied with a function g of the form 

g(~) = ((p(~) - .~o~)~) v o 

where p is a nonnegative continuous function with p(0) -- 0. It should be noted 

that  the function g defined above is a comparison function, by (ii) of Example 

1.1. We therefore conclude that there is an ro > 0 such that  for each (r r E 

D(Ji) X D(w41/2) with I[(r r  -< r0, problem (4.10) has a unique solution 

u in the class 

C([O, oo) : ~)("1 cl([0, oo): ],})I"-'1 C2({0, oo): ~~) 

satisfying the initial condition (u(0), u'(O)) = (r Co)- 

Finally we give an applicati6n of our abstract theory to the Cauchy problem 

for the quasi-linear wave equation 

Otu = O~v, 
(4.17) Otv = O,a ' (u)  - i~v. 
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Here u > 0 and it is assumed that a �9 Cs(R) satisfies a(0) = a'(0) = 0 and 

a'(r) >c0  > 0 f o r r c R .  

To prove the global existence of solutions, we apply the main theorem with 

three nanach spaces Z = L2(R) x L2(R), X = HI (~ )  x H I (~ )  and Y = H2(I~) x 

H2(]I(). (4.17) is reduced to the abstract evolution equation 

(d/dt)(u(t), v(t)) = (A(u(t), v(t)))(u(t), v(t)) for t > 0 

in the real Banach space Z, where {A(w, z): (w, z) �9 Y} is a family of linear 

operators in Z defined by 

(A(w, z))(u, v) = (O~v, a"(w)O~u - uv) 

for (u,v) �9 D(A(w,z)) = HI (~ )  x Hi(If0. We use a nonnegative continuous 

functional ~ on Y defined by 

I F ~(~, v) = E (v2 + I.~ + O~l 2 + I~0~ + a~l  ~) dx 
o o  

f_" /7 + E o"(~)(1o~l = + 102~121 & + o(~1 dx. 
o o  

It is easily seen that  

C~II(u,V)II2H=• <_ ~(u,v) ~ G O  v M2(IlulIH~))II(~,V)II2H=• 

for (u,v) e H2(II() x H2(R), where Mk(r) = sup{Ia(k)(s)l: Is[ _ r} for r _> 0. 

This means that conditions (~vl) and (~o2) are satisfied. Let us consider a family 

{(', ")(~,z) : (w, z) �9 Y} of inner products in Z defined by 

F ((u, v), (it, 0))(w,~) = (a"(w(x))u(x)it(x) + v(x)O(x)) dx 
o o  

for (u, v), (it, ,5) �9 Z. We recall the following fact needed for later arguments: 

(4.18) Hi(R) C L~176 and IMIoo < IMIH, for ~ �9 Hi(R). 

If (w,z) �9 Y~ then we have by (4.18), IIo"(~())IIL= < M2(~JGTJj) and 

(4.19) 
II~"(w(.)) - ~"(+('))IIL+ ~ M3(IIwlIL= v II+llL=)llw - +ILL= 

I 

< M3(v~/c~)l l (w,  z) - (~, ~)llx. 



250 N. TANAKA Isr. J. Math. 

These estimates imply condition (N) in a way similar to the derivation in the 

first example. If (w,z) E Y,~ then a"(w(.)) E WZ'~176 and IlOxo'"(w(.))tlL~ <_ 
M 3 ( ~ ) V / ~ - / c v .  By a routine computation we see that for each (w, z) E Y~, 
A(w, z) -w(o~)I  is dissipative in Z(~,z) where w(a) -- M3(~X/r~)  ~ / 2 x / ~ .  
Similarly to the preceding examples, the range condition is checked by using 

Lax-Milgram's theorem. It follows that for each (w, z) E Y~, 

A(w,z )  E G(Z(~,z), 1,Lo(c~)), 

which proves condition (A1). (See also [8, Proposition 5.7].) To prove condition 

(A2), we consider the operator S defined by 

S(u, v) = (u - O~u, v - O~v) 

for (u, v) E Y, which is an isomorphism of Y onto Z with the inverse S -1 (u, v) -- 

(•u, n v ) / 2  for (u, v) E Z, where T~ is defined by 

/? 
for u E L 2 (R). We note here that for u E L 2 (R), 

(4.20) T~u E H2(N) and II0~T~UllH1 < CllUllL2 

for some C > 0. The relation SA(w,  z )S  -1 = A(w, z) + B(w,  z) holds with 

(S(w, z))(u, v) = (0 , -02a"(w(x) )  �9 O~(Tiu)(x)/2 - Oxa"(w(x)).  02(T~u)(x)) 

for (u,v) E Z and (w,z) E Y.  The desired claim that B(w, z )  E B(Z)  is 
proved by (4.20) and the fact that O~a"(w(.)) = a(3)(w(.))O~w(.) E L~(R)  and 
02a"(w(.)) = a(4)(w(.))(Oxw(.)) 2 + o(3)(w('))O2(w(')) E n2(]~), if w E H2(R). 

To prove (1.3), we estimate the L ~ norm of the terms involving a (k) and use 

(4.18). This yields 

IIo~"(~( . ) )  - o~o"(+(.))llL= v IIO=o"(~(.)) - o J ' ( + ( . ) ) l l ~  
(4.21) 

<_ C(llwllH~ v II~IIH~)IIw - ~IIH~ 

for w,~b E H2(IR). The desired inequality (1.3) is obtained by (4.20) and (4.21). 

Since IlO~a"(w(.))llLOO < M3(IIwlIH')IIwlIH~, we find IIA(w,z)llY, x <,C(llwllH~) 
for (w, z) �9 Y, which implies (1.4). The fact that A �9 C(Y; B(Y,  X))  follows 

immediately from the inequality obtained by (4.19) and (4.21) that 

IIA(w,z) - A(~,  ~)llr, x < C(llwllH~ v II~llH=)llw - ~IIH= 
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for (w, z), (~b, ~) �9 Y. Since 

- 

---- (~lo(3)(Ow(x)-k (1-O)w(x))dO) (w(x)- 

we have, by (4.18), 

_< M (ll llz , v II IIH')IIO  IIHIlI - 

for u E H2(R) and w,~b C Hi(R),  from which (1.5) follows readily. It is shown 

[8, Proposition 5.8] that  condition (G) is satisfied with a comparison function g 

of the form (1.12). All assumptions of main theorem are satisfied, and conse- 

quently there exists r0 > 0 such that for each (u0, v0) �9 H2(I~) • H2(R) with 

I[(u0, v0)l[H2 •  2 ~ r0, problem (4.17) has a unique solution (u, v) in the class 

C([0, ec): H2(R) • H2(]R)) A C1([0, c~): Hi(R) x Hi(R)) 

satisfying the initial condition (u(0, x), v(0, x)) = (uo(x), Vo(X)) for x E I~. 
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